Editorial

Field Reports
 Richter et al.
 Shubayqa 1
 Dietrich et al.
 Göbekli Tepe
 Richter
 East Jordanian Badya
 Olszewski and al-Nahar
 Tor at-Tareeq, Wadi al-Hasa

Contributions
 Caracuta et al.
 Archaeobotanical Data from Nahal Zippori 3

Lab Report
 Kinzel et al.
 Diana Kirkbride-Helbæk Archive

Events
 Watkins
 Prix Archéologique

Upcoming Conferences / Workshops

New Publications

Masthead

NEO-LITHICS 1/14
The Newsletter of
Southwest Asian Neolithic Research
Editorial

Within a few weeks, we editors of ex oriente paved the way for three important publications (D. Henry and J. Beaver, eds., on Ayn Abū Nukhayla; by guest editors M. Benz and J. Bauer the pioneering Neo-Lithics 2/13 special issue on The Symbolic Construction of Community; the book of M. Kinzel on the architecture of Shkārat Msaied and Ba‘ja in our SENEPE series). We are proud of these publications, as are our co-editors Reinder Neef and Dörte Rokitta-Krumnow.

But this would not be an editorial of Neo-Lithics, if we would not be thoughtful about this output: Who can read all these, process all the information, and who can afford to buy all these, in addition to the rapidly increasing enormous output of equally important publications on the Near Eastern Neolithic by other authors, editors and publishing houses? And even more problematic: Who can intellectually and fairly evaluate the constantly emerging new approaches and schools of thought? If one has to publish one’s own material and thoughts without first consulting the eruption of new literature for one’s own topic, doesn’t this severely impact the academic quality, discourse and progress of one’s own publications? More and more we see that colleagues apparently were unaware of recently published materials and ideas on their subjects and have forged ahead in order to cope with the publishing constraints.

Research has become governed by highly problematic tools and concepts since it is fueled by various uncontrollable acceleration mechanisms and developments, such as funding institutions that grant shorter and shorter research terms, the “authority” of rating systems in academic publishing, the ever-growing possibilities of the internet and computer software; the list goes on and on. Does what has been thought to facilitate research gradually become the grave digger of research? Can we continue to hope that things are not that dramatic or worse?

Hans Georg K. Gebel and Gary Rollefson
The 2012 Excavations in the Area A Early Epipaleolithic at Tor at-Tareeq, Wadi al-Hasa

Deborah I. Olszewski and Maysoon al-Nahar

Tor at-Tareeq (WHS 1065) was located during survey of the south bank region of the Wadi al-Hasa (MacDonald et al. 1983) and was previously excavated during seasons in 1984 and 1992 (Clark et al. 1988; 1992) and in 2000 (Olszewski et al. 2000; 2001). The site consists of several Epipaleolithic occupations, the earliest of which date to the Nebejian and possibly the Qalkhan Early Epipaleolithic, and the latter of which is likely to be Middle Epipaleolithic. Our project, the Western Highlands Early Epipaleolithic Project (WHEEP) is focused on gaining a better understanding of Early Epipaleolithic hunter-gatherer behaviors, and we chose Area A (the uphill portion of the 1984 step trench; Fig. 1) for several reasons. Primary among these was the possible presence of a structure, the fact that Area A was excavated only in 1984 and thus it is the least known part of the site, the potential for recovery of charcoal for radiocarbon dating, and the deposits here contain only the Early Epipaleolithic.

Previous Excavations at the Site

The first excavations occurred in 1984, when a 44 m x 1 m trench was placed north-south from near the top of the hillside through a small wadi at the base of the hill and into the next ridge to the south (Clark et al. 1988). The trench was divided into step increments of 5 m each, with the northernmost section called Step A, then Step B, then Step C, and so forth to the south (Fig. 2). Site deposits occur in Steps A, B, and C. In the A and B portions of the trench, the cultural materials are Early Epipaleolithic, while the C area of the trench yielded Nebejian Early Epipaleolithic in the lower deposits, overlain by a later occupation that is likely Middle Epipaleolithic, as it is similar in microlith typology to Kharaneh IV Phase D (Muheisen 1988; Richter et al. 2013). In Step A, a portion of a possible structure was found and a series of charcoal samples were recovered from several hearth features in Steps A, B, and C. These yielded dates ranging from about 20,200 to 18,800 calibrated BP (Clark et al. 1988: 265; calibrated using CalPal_2007_HULU). Faunal materials included gazelle, equids, and tortoise; marine shell also was recovered.

In 1992, two 2 m x 2 m excavation blocks were dug (Clark et al. 1992). Unit B was situated in the B area of the site, while Unit C was in the C area (see Fig. 2). In addition to lithic and faunal assemblages, these excavations yielded ground stone fragments, marine shell.

![Fig. 1 Looking south at the 2012 excavations at Tor at-Tareeq (WHS 1065). The 1984 step trench is clearly visible going downhill to the south (Photo: D. Olszewski).](image-url)
(Mitra, Strombus, Conus, Arcularia, Nerita, Columbella, and Dentalium), pollen, and more radiocarbon dates (Neeley et al. 1997, 1998, 2000); the charcoal date is from a hearth in the Early Epipaleolithic deposits and is about 19,900 calibrated BP (Neeley et al. 2000: 247; calibrated using CalPal_2007_HULU). Bedrock mortars were recorded in the ridge above the site (Peterson 2000). Lithic analysis, as well as pollen, suggested that the Early Epipaleolithic at Tor at-Tareeq consisted of two occupations. Initially, Nebekian groups visited Tor at-Tareeq on a limited, short-term basis during a period of cool and dry climate. Somewhat later, warmer conditions are indicated by a rise in Noaea-type pollen, and the lithic assemblage from this later occupation contains substantially greater numbers of cores that are only lightly reduced, perhaps indicating somewhat lengthier visits to the site (Neeley et al. 2000). Additionally, there were more endscrapers and burins in the upper Early Epipaleolithic context, possibly suggesting a greater range of activities which also would indicate longer-term occupations.

The goal of the 2000 excavations at Tor at-Tareeq was to recover more data concerning the Middle Epipaleolithic occupation in Area C (Olszewski et al. 2001). A total of five 1 x 1 m squares were excavated (see Fig. 2), yielding data for the Early and Middle Epipaleolithic occupations. Given the emphasis placed on Area C, only the earliest of the Early Epipaleolithic occupations was sampled (because the later Early Epipaleolithic deposits identified by Neeley et al. [2000] were not present in Area C). The faunal assemblage yielded gazelle, equids, and tortoise. Marine shell was recovered, as were some ground stone fragments.
Description of the 2012 Excavation Units

The 1984 step trench established that the occupations at Tor at-Tareeq were situated near the top of the hill slope, while excavations in 1992 and 2000 indicated that the site extended at least 3 m to the west and 4 m to the east of the 1984 trench. Our project sought to take advantage of the stratigraphy established in 1984 by placing new units immediately adjacent (west and east) to the trench, allowing for greater horizontal exposure (see Fig. 2). We also sought to explore the spatial dimensions of the site by excavating a unit 8 m to the east of the trench.

We used a total station to point provenience all artifacts, fauna, and other cultural materials larger than 2.5 cm. All sediment was excavated in 3 cm arbitrary levels within natural/cultural layers within 50 cm quads within each 1 x 1 m unit. Features and rodent burrows were excavated separately. The sediment from each of these contexts (quad, feature, burrow) was collected in a "bucket shot;" that is, it was recorded using the total station. All sediment was screened using 2 mm mesh.

We also used the total station to record natural rocks greater than 10 cm in size. For each 1 x 1 m unit, we took flotation, pollen, and phytolith samples from each natural/cultural layer, as well as for each feature.

Units West of the Step Trench (Main Area)

Four units (I98, I99, J98, and J99) in Area A were placed west of the 1984 step trench and all were excavated to bedrock. They were chosen in part because they contained the area of the site where the other half of the possible structure found in 1984 might exist. However, no trace of this possible structure was found. The abundant cobble and small boulder content of both Layers 3 and 4 likely means that the rocks identified as the possible structure in 1984 were simply part of a larger context of slope rubble resulting from decay of the bedrock ridge above the site. There were, however, two features found (see below).

The western units contained natural/cultural Layers 1, 2, 2a, 3, 4, 4c, and 5 (Table 1). Layer 1 represents the loose top 1-2 cm of sediment at the site; this is the same sediment as Layer 2, which contains lithics and rare fauna. Lithic density increases in Layer 3, although faunal remains continue to be rare. Layer 4 is a mainly brecciated sediment containing calcium carbonate which may have percolated through this deposit as a result of spring activity at the site; this layer yielded abundant lithics and more fauna compared to upper layers. Layer 4c appears to be an interface between the brecciated Layer 4 and the underlying, looser sediment of Layer 5. Layer 5 contains abundant lithics. The bedrock slopes from north to south and was reached at about 33 cm below modern ground surface in the north (I99) and 47 cm below modern ground surface in the south (I98).

Units East of the Step Trench (Main Area)

Six 1 x 1 m units (L97, L98, L99, M97, M98, and M99) and the remaining portions of K97, K98, and K99 were dug to the east of the 1984 step trench. All of these reached bedrock. The stratigraphy in these units was slightly more complex, particularly in L97 and M97. Features 3 and 4 were found (see below). Additionally, Layers 4a and 4b found in M97 may represent another feature or set of features.

The eastern units variably contained natural/cultural Layers 1, 2, 3, 4a, 4b, 4c, 4d, 5, 5a, and 5c (see Tab. 1). Layers 4a and 4b were found only in the SE
Field Reports

Quad of M97; Layer 4d was a discontinuous breccia, similar to Layer 4, found beneath Layer 5. Layer 5a was an ashy deposit found only in L97, while Layer 5c was the deposit directly on top of bedrock in K97, L97, and M97. As in the western units, the bedrock in the eastern units sloped from north to south. Bedrock was reached in the northern units at about 20 cm below modern ground surface and at approximately 65 cm below modern ground surface in the southern units.

Unit S97

The 1 x 1 m unit, S97, was excavated 8 m east of the trench, and 4 m east of the eastern boundary of Squares C1 and C2 from the 2000 excavations (see Fig. 2). Cultural materials were present. However, the stratigraphy is not complex, perhaps suggesting that these materials are near the eastern limits of the site.

As with the units adjacent to the step trench, S97 contains a Layer 1 (loose top sediment) and Layer 2, from which Layer 1 is derived. The description of these two layers is similar to those of the trench area, although Layer 2 is much thicker here. Faunal preservation was particularly good, compared to the units near the trench. Level 5b was found only in a portion of the southern quads (the southern quads could not be excavated deeper due to boulder-sized rocks protruding from the southern wall). Bedrock occurs at about 13 cm below modern ground surface in the northern quads, and at an unknown depth more than 45 cm below modern ground surface in the southern quads.

Discussion

Excavations at Tor at-Tareeq in 2012 opened about 11 m2 in Area A. All of the levels in all of the units yielded cultural materials. Lithics were the most abundant, with faunal remains variable due in part to generally poor preservation conditions in most of the layers. Special finds included marine shell, several small magnetite geodes, some possible ochre, and charcoal. Four features were recorded.

Correlation of 2012 and 1984 Levels

The stratigraphy of the eastern wall of the 1984 step trench and its description (Clark et al. 1988: 259) served as an initial guide to the 2012 excavations. We recorded a similar set of layers, although there were some nuances and additional layers that were not identified in 1984 (Tab. 2; Fig. 3). Based on previous assessments of cultural occupations at Tor at-Tareeq (e.g., Neeley et al. 2000; Olszewski et al. 2001), the 2012 stratigraphy

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2a</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4b</td>
<td>-</td>
</tr>
<tr>
<td>4c</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>5a</td>
<td>-</td>
</tr>
<tr>
<td>5c</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1 Layers across the main excavation area at Tor at-Tareeq (the K units are only partial, as most of the K deposits were excavated by the 1984 step trench).

<table>
<thead>
<tr>
<th>2012 Western and Eastern Units</th>
<th>1984 Step A Trench*</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>undifferentiated 1 & 2</td>
<td>the 1984 Level 1 was described as light brown surface deposits, which appears to correspond with the 2012 Layer 1</td>
</tr>
<tr>
<td>2</td>
<td>undifferentiated 1 & 2</td>
<td>the 1984 Level 2 was described as a light grey silt; the 2012 Layer 2 is a very pale brown; it is probably the same sediment as the 1984 Level 2</td>
</tr>
<tr>
<td>3</td>
<td>3a</td>
<td>described as a brown to grey silt in 1984; probably corresponds to the 2012 Layer 3 brown clayey silt</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>brecciated, calcareous sediment</td>
</tr>
<tr>
<td>4c</td>
<td>-</td>
<td>likely excavated in 1984 as part of the 1984 Level 3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>same description for both excavations</td>
</tr>
<tr>
<td>5c</td>
<td>-</td>
<td>the 1984 step trench did not distinguish between Layers 5 and 5c identified in 2012, although the 1984 Level 5 is described as brown to yellowish brown, which is the color difference between the 2012 Layers 5 and 5c.</td>
</tr>
</tbody>
</table>

Table 2 Correlation of the 2012 main excavation layers with the 1984 Step A trench stratigraphy. *Data from Clark et al. (1988: 259) and Neeley et al. (2000: 252-253).
likely can be interpreted as follows. Layers 1 and 2 are a mixed context, especially as several instances of later period cultural materials (e.g., arrowheads, pottery, glass) were recovered along with Early Epipaleolithic lithics. Layer 3 represents the later set of Early Epipaleolithic occupations, which correspond to warmer and wetter climate as suggested by Neeley et al. (2000). Finally, Layers 4, 4c, 5, and 5c document the earlier Nebeian Early Epipaleolithic use of the site during the period of cooler and drier climatic conditions.

Description of the Lithics

Lithic density at Tor al-Tareeq was expected to be high, given the results of previous excavations (Clark et al. 1988; Neeley et al. 1998; Olszewski et al. 2000). In fact, we recovered 40,009 artifacts, including small pieces (but not including materials from rodent burrows or wall cleaning). Due to its likely mixed context, further discussion of Layer 2 is omitted, as are the materials from Layers 4a and 4b which include a Helwan point. The lithics from Unit S97 are treated separately from the Main Area units adjacent to the trench.

Tools

There are 1,538 tools from the Main Area and 86 tools from S97. Nongeometric microliths typify most contexts (Tabs. 3 and 4). Several distinctions exist between the natural/cultural layers. Layer 3 contains more burins, perforators, notch/denticulates, and retouched pieces, but fewer nongeometric microliths than the lower layers. Layer 3 is also different in yielding nearly half of the rare Qalkhan points, as well as more than half of the La Moullah points. However, it also contains extremely narrow, attenuated curved (double-arched) backed bladelets, which are a marker for the Nebeian in the eastern Levant (Byrd and Garrard 2013: 374-380). The geometric microliths in Layer 3 are a small number of narrow rectangles, trapezes, and isosceles and scalene triangles, as well as seven wide lunates and wide trapezes that are intrusive elements from the Middle Epipaleolithic occupation.

Layers 4, 4c, 5, and 5c are characterized by high frequencies of nongeometric microliths and variable quantities of endscrapers and burins. Differences include fewer attenuated curved backed bladelets in Layers 4/4c. There also are fewer geometric microliths in Layers 4/4c; these include rare examples of narrow trapezes, rectangles, and scalene triangles, as well as one wide trapeze that is intrusive. In Layers 5/5c, the geometric microliths are mainly narrow trapezes, rectangles, and isosceles and scalene triangles; there are also four intrusive wide lunates and one wide trapeze. The microlith differences between Layers 4/4c and 5/5c might suggest that Layers 4/4c represent a later set of Nebeian occupations, or perhaps an emphasis on different activities.

The nongeometric microliths in Layer 2 of S97 are mainly attenuated and curved backed bladelets, as well as truncated bladelets. There are seven examples of wide trapezes and wide lunates.

Cores

There are 206 cores and core fragments from the Main Area and 16 from S97 (Table 5). The greater frequency of cores from Layer 3 (46%) compared to the lower layers (28% for Layers 4/4c and 26% for Layers 5/5c) also supports an attribution of Layer 3 to the later set of Early Epipaleolithic occupations that coincide with a warmer and wetter climatic interval, as suggested by Neeley et al. (2000). With the exception of Layer 5c, cores are mainly single platform with smaller frequencies of opposed platforms. About 80% of the single and opposed platforms cores in Layer 3 are for the manufacture of blade/bladelets, while about 71% of those from Layers 4/4c and 61% from Layers 5/5c are blade/bladelet.

Unit S97, Layer 2, mainly contains single platform and opposed platforms cores (Table 6). Nearly half of these core types were used for the manufacture of blade/bladelets.

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>4a</th>
<th>4b</th>
<th>4c</th>
<th>5</th>
<th>5c</th>
</tr>
</thead>
<tbody>
<tr>
<td>endscraper</td>
<td>-</td>
<td>6.1</td>
<td>3.8</td>
<td>4.3</td>
<td></td>
<td>33.3</td>
<td></td>
<td>5.1</td>
<td>2.5</td>
</tr>
<tr>
<td>burin</td>
<td>1.5</td>
<td>2.6</td>
<td>2.0</td>
<td></td>
<td></td>
<td>1.3</td>
<td>1.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>backed piece</td>
<td>6.7</td>
<td>3.0</td>
<td>1.7</td>
<td>0.7</td>
<td></td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perforator</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>truncation</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>2.6</td>
<td>14.3</td>
<td>2.8</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>geometric microlith</td>
<td>-</td>
<td>20.0</td>
<td>14.6</td>
<td>9.8</td>
<td>5.3</td>
<td>33.3</td>
<td>14.3</td>
<td>3.8</td>
<td>8.3</td>
</tr>
<tr>
<td>nongeometric microlith</td>
<td>-</td>
<td>26.7</td>
<td>31.8</td>
<td>42.3</td>
<td>51.3</td>
<td>-</td>
<td>46.8</td>
<td>52.3</td>
<td>53.6</td>
</tr>
<tr>
<td>microlith fragment</td>
<td>-</td>
<td>33.3</td>
<td>14.8</td>
<td>20.1</td>
<td>21.2</td>
<td>57.1</td>
<td>24.1</td>
<td>22.3</td>
<td>19.0</td>
</tr>
<tr>
<td>special tool</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>notch/denticulate</td>
<td>13.3</td>
<td>9.1</td>
<td>13.7</td>
<td>3.3</td>
<td>14.3</td>
<td>3.8</td>
<td>3.3</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>retouched piece</td>
<td>-</td>
<td>14.1</td>
<td>10.3</td>
<td>8.3</td>
<td></td>
<td>8.9</td>
<td>6.3</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>multiple tool</td>
<td>-</td>
<td>1.0</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>varia</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>0.5</td>
<td>0.7</td>
<td>33.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hammerstone</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3 Tool frequencies by layer within the main excavation units (west and east of the 1984 step trench).
Debitage

There are 35,292 debitage items (including three manuports) from the Main Area and 2,871 (no manuports) from S97. The debitage is dominated by very small pieces in most layers (Tabs. 7 and 8). It reflects in part the high incidence of pieces broken due to heat exposure (shatter), either from burning events in hearths or more generally from exposure to the sun while these pieces were on the site surface during the periods after site occupations. There are somewhat greater frequencies of microburins in layers below Layer 3. In particular, Layers 4 and 4c seem to group together, as do Layers 5 and 5c. Calculation (excluding microlith fragments) of the restricted microburin index (Imbr; see Goring-Morris 1987: 50), however, results in the following: Layer 3 has an Imbr of 27.8, Layers 4/4c of 35.1, and Layers 5/5c of 36.1. Thus, there are similar levels of use of the microburin technique in both Layers 4/4c and 5/5c. The distinction in microburin frequency and use between Layer 3 vs. Layers 4/4c and 5/5c appears to offer support for either different chronological periods or sets of activities, as noted above for tools and cores.

Debitage in S97 (see Tab. 8) also yielded large quantities of small pieces (small bladelets and small flakes, as well as shatter). Four microburins were recovered from Layer 2 in this unit.

Features

Excavations in the units adjacent to the 1984 step trench revealed several features, as well as one potential feature. Feature 1 is in Layer 2 in Unit I99; it is a small semi-circular rock ring, although given the abundance of rock in the layers, it is not clear if Feature 1 is cultural. Features 2, 3, and 4 are more definitive. Each appears to be either a hearth or possibly hearth dump. The fill of each of these features contains darker silty sediment, often mixed with ash and fire-cracked rock; similar combinations of attributes were identified in 1984 as hearths (Clark et al. 1988). Feature 2 was dug into Layers 4 and 5 in Units I98/J98. Features 3 and 4 were in Layer 5 in Units L97/M97 and L97, respectively. Additionally, the layers identified as 4a and 4b in Unit M97 are darker in color than surrounding sediment and contain ash. They may be part of one additional feature, if the more ashy sediment of Layer 4b is the lower portion of a hearth represented by the darker sediment of Layer 4a.
As in previous excavations at Tor at-Tareeq, several other cultural materials were recovered. These include fauna, shell, charcoal, and miscellaneous items. We also re-recorded several bedrock mortars using the total station to point plot their locations (see Fig. 2), and recorded several possible petroglyphs and possible game boards.

Faunal remains were recovered from nearly all contexts. However, these tend most often to be highly fragmented due to poor preservation conditions. Unit S97 yielded the best preserved fauna. The faunal analyses are ongoing, but observations during excavation indicate that species represented include gazelle, probable equids, land tortoise, and possibly bird.

Due to the use of small mesh screens, the 2012 excavations were successful in recovering a number of marine shells, most of which are beads. All of the marine shell, except one piece found on the surface next to Unit S97, was recovered from the Main Area units adjacent to the step trench. They were found in Layers 2, 3, 4, and 5, with the majority coming from Layer 3, which may offer additional support for later Early Epipaleolithic occupations at the site being somewhat longer-term. Although the analysis of these has not yet been undertaken, the majority of the marine shell is Dentalium, with other shells likely cone shells and possibly Strombus.

Seventeen charcoal samples were recovered from the Main Area. Two are from Feature 2 and one from Feature 3, with the remainder from Layers 4, 5, and 5c. Once some of these are dated, it will be possible to assess if Layers 4 and 5/5c represent different temporal occupations. Unfortunately, we will not be able to determine the chronological placement of Layer 3.

As noted previously, Layers 1 and 2 included several later period materials. There was one undecorated pottery sherd, a piece of glass with a turquoise line that may be Byzantine/Islamic in age, several Neolithic arrowheads, and five small, round magnetite nodules about the size of marbles. The arrowheads include Pre-Pottery and Yar moukian types. A fossil shark tooth also was recovered, as were a very couple of very small pieces of probable hematite.

Several bedrock mortars in the ridge above the site were noted in 1984 and studied in 1992 (Peterson 2000; additionally, several fragments of ground stone were recovered from excavations in 1984, 1992, and 2000. The 2012 excavations did not yield any ground stone, except for one probable pestle of quartzite in Layer 2 of S97. We recorded seven bedrock mortars/cupmarks (one more than Peterson 2000) (see Fig. 2). Four are clustered to the northeast of the site, two are directly north of the site, and the other is near the possible petroglyphs and game boards (see below). It is not possible to definitively link the bedrock features to the Epipaleolithic occupations at Tor at-Tareeq.

The petroglyphs include several figures comprised of connected lines, often with at least one circle. Additionally, an animal figure pecked into the side of the ridge northeast of the site was noted. As this is a relatively visible location, we believe that the animal is a recent addition because otherwise it would have been seen during at least one of the previous excavation seasons in 1984, 1992, and 2000. What is interesting is that the style of this animal figure replicates those known from ancient sites in Jordan.

Finally, we recorded two to three probable game boards in the bedrock ridge above the site. They contain two more or less parallel rows of small depressions (10 to a row) and appear similar to the African game of mancala. One layout seems to be a double board.

Summary

The 2012 excavations at Tor at-Tareeq expanded upon previous work at the site in 1984, 1992, and 2000, documenting that the site extends at least 8 m east of the 1984 step trench. The 2012 lithic assemblage contains just over 40,000 artifacts; Layers 1 and 2 represent a mixed context that includes Neolithic arrowheads, and later period materials, along with Epipaleolithic lithics. The data for Layers 3 and below suggest at least two main divisions within the Early Epipaleolithic at the site. Layer 3 appears to correspond to what Neeley et al. (2000) identified as a longer term occupation that coincides with climatically warmer and wetter conditions, based on the greater frequency of cores and some distinctions within the microlith component (it has more of the La Mouillah points and rare Qalkhan points). Possibly Layer 3 could be called Qalkhan Early Epipaleolithic based on comparisons with materials from the Azraq Basin (Byrd and Garrard 2013: 372). Layers 4/4c and 5/5c appear to represent earlier Nebekian occupations, with Layers 4/4c distinguished by fewer attenuated curved backed bladelets and fewer geometric microliths compared to Layers 5/5c.

Acknowledgements: The 2012 excavations at Tor at-Tareeq were supported by a grant from the National Science Foundation. Logistical support was provided by the Institute of Archaeology at Jordan University, by Hashemite University, and by the American Center for Oriental Research in Amman. This is WHEEP Contribution #5.
Deborah I. Olszewski
Department of Anthropology, Penn Museum
University of Pennsylvania
deborah@archsoc.upenn.edu

Maysoon al-Nahar
Dean, Faculty of Archaeology and Tourism
University of Jordan
Amman, Jordan
maysnahar@gmail.com

References

Byrd B.F. and Garrard A.N.

Clark G.A., Neeley M., MacDonald B., Schuldinrein J., and ‘Amr K.

Goring-Morris A.N.

MacDonald B., Rollefson G.O., Banning E.B., Byrd B.F., and D’Annibale C.

Muheisen M.

Neeley M.P., Clark G.A., Schuldinrein J., and Peterson J.D.

Neeley M.P., Peterson J.D., Clark G.A., and Fish S.K.

Olszewski D.I., Cooper J.B., Jansson H., and Schurmans U.

Peterson J.D.

The Construction of Neolithic Corporate Identities

Invitation to a Workshop organized by Trevor Watkins (University of Edinburgh), Marion Benz (University of Freiburg i. Br.) and Hans Georg K. Gebel (Free University Berlin)

http://9icaane.unibas.ch (early bird registration until March 31st, 2014)

One of the most momentous thresholds in the longer-term evolution of human sociality was neolithisation - the transition from more flexible mobile foraging communities to sedentary and complex corporate societies. For too long Neolithic research has concentrated on the economic side of this transition, while the formation and maintenance of these early large-scale communities could not have developed without unprecedented cognitive and social capacities. More than ever before, in these sedentary milieus the human ability to perceive selectively, to memorize associatively, and to act in a collaborative way, evolved by steadily valorizing, symbolically charging and communicating practices, discourses, spaces and things, including building “traditions”. Corporate identities in the Near Eastern Late Epipalaeolithic and Neolithic were not only formed and sustained by commonly accepted tangible things (images, paraphernalia, practices etc.), they were also promoted and transformed by intangible modes, codes and ideological concepts.

The workshop aims to identify and translate the empirical evidence of the different intangibles that helped to form Epipalaeolithic and Neolithic group identities. One of the approaches might be the concept of (inter-)mediality by which cognitive competences behind corporate strategies can be identified. In addition to prehistoric archaeologists, the workshop invites contributions from specialists in evolutionary and cognitive sciences.

Participants with contributions

Prof. Dr. Kurt W. Alt, Institute of Anthropology, Johannes-Gutenberg University Mainz, Germany.
Dr. Eleni Asouti, School of Classics, Archaeology and Egyptology, University of Liverpool, UK.
Dr. Marion Benz, Science Associate, Department of Near Eastern Archaeology, Albert-Ludwigs-University Freiburg i.Br., Germany.
Dr. Amy Bogaard, Lecturer in Neolithic and Bronze Age Archaeology, School of Archaeology, University of Oxford, UK.
Dr. Lisbeth B. Christensen, Department of the Study of Religion, University of Aarhus, Denmark.
Dr. Hans Georg K. Gebel, Institute of Near Eastern Archaeology, Free University Berlin, Germany.
Dr. Theya Molleson, Science Associate, Department of Earth Sciences, The Natural History Museum, London, UK.
Dr. Tobias Richter, Department for Cross-Cultural and Regional Studies, University of Copenhagen, Copenhagen, Denmark.
Prof. Dr. Gary O. Rollefson, Department of Anthropology, Whitman College, Walla Walla, USA.
Dr. Christa Sütterlin, Film Archive of Human Ethology of the Max-Planck-Society, Andechs/Munich, Germany.
Prof. Dr. Trevor Watkins, Emeritus, School of History, Classics and Archaeology, University of Edinburgh, UK.
Domestication of Plants and Animals in the Near East

Invitation to a Session organized by Maria Saña Seguí, maria.sana@uab.cat (Departament de Prehistòria, Universitat Autònoma de Barcelona, Barcelona - Spain) – Jean-Denis Vigne, vigne@mnhn.fr (UMR 7209: Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, Muséum National d’Histoire Naturelle – CNRS, Paris - France) – Sue Colledge, smcolledge@gmail.com (University College London, Institute of Archaeology, London - UK) – Miquel Molist, mimolist@gmail.com (Departament de Prehistòria, Universitat Autònoma de Barcelona, Barcelona - Spain)

XVII World Congress of the International Scientific Association UISPP, Burgos-Atapuerca (Spain), between the 1-7 September, 2014.

The aim of this session is to provide a platform to discuss and exchange ideas, opinions and new theoretical-methodological perspectives on the study of plant and animal domestication. ... One of the main points raised in the debate on the phenomenon of Neolithisation is the need for integration of studies of animal and plant domestication within the context of economic and social change that took place in the early Holocene. Our session is to present and discuss from different sights the processes of domestication, for example, their causes and consequences, based on the wealth of accumulated data from recent research and, most important, with a particular emphasis on drawing together evidence from archaeozoological, archaeobotanical and archaeological studies. Special attention will be paid to new conceptions about early domestication (i.e. “predomestic” agriculture or control of wild animals), to new methodological, technical and high resolution approaches to the study of the processes, to different temporal and spatial scales and to the exploration of the variables that interact during the domestication of animals and plants.

With these aims in mind, the session will be interdisciplinary, including presentations and discussions on the following aspects:

- concepts used in the study of domestication in the Near East;
- new methodological and technical approaches to the study of plant and animal domestication, for example, criteria involved in the definition and classification of the first domestic animals and plants;
- the empirical record and new archaeological evidence for domestication – micro- and macro-spatial approaches;
- economic strategies and the integration of animals and plants: the origins of agricultural and pastoral practices;
- explanatory models for animal and plant domestication;
- the role of the Near East in the study of the domestication and Neolithisation processes: its distinctiveness and heuristic power.

Communication proposals have to be submitted by the 30th of April 2014 to the congress organization. Registrants must indicate which Congress sessions they will attend, before May 31, 2014 (www.burgos2014uispp.es). Please also send a copy of the abstract to us (contact: maria.sana@uab.cat). On the congress webpage you should also find information on the guidelines for the abstracts and the posters, congress inscription and financial assistance for participants:

- registration and proposal forms at www.burgos2014uispp.es
- technical information: uispp2014@viajeseci.es
- scientific information: uispp2014@fundacionatapuerca.es
2014 ToRS International Food Workshop

Food, Identity and Social Change

25-26 September 2014

Department of Cross-cultural and Regional Studies (ToRS),
University of Copenhagen, Denmark

Call for Proposals

Food draws people into the web of life and touches upon everything that matters: it expresses personhood, marks membership (or non-membership) in practically any kind of social grouping and draws lines of where morality begins and ends. Yet, food can also signify very different things from place to place, from kitchen to kitchen and from one time period to another. Social changes – such as peoples on the move (nomads, migrants, tourists), changes in intergroup relations within societies, new technologies (in mass media, biotechnology), mass production of foods, increasing globalization of food and changes caused by war – have been relatively neglected in food studies.

Food is a powerful lens for analyzing identity. This is clearly illustrated in the works of food studies that include Bourdieu’s inquiry into the taste and preferences of the French bourgeoisie and Mintz’s pioneering historical study of how high status sugar produced in the Caribbean became a working class staple to the exciting growth of more recent works by Appadurai on how to create a national cuisine and Wilk’s scrutiny of the complex culinary reactions of Belizeans to colonialism, class differentiation and modernity.

Keynote Speakers
Professor Tamara L. Bray, Wayne State University
Professor Mandy Thomas, Queensland University of Technology
Professor Richard R. Wilk, Indiana University

We welcome contributions on food, identity and social change: Why do we eat what we eat and why have different cultures and societies at different times eaten other things? What fosters social change to affect dietary patterns and changing identities? How can food offer the lens to understand the cultural and social affinities in moments of change and transformation? The topic offers an opportunity to excavate the past, to examine the present and to project into the future.

Anyone interested in presenting a paper at the ToRS 2014 International Food Workshop should submit a proposal of 300 words and relevant contact information by 1 April 2014 to Katrine Meldgaard Kjær (katrinemkjaer@gmail.com)

Organizers: Cynthia Chou (cynchou@hum.ku.dk) and Susanne Kerner (kerner@hum.ku.dk)
Organizing Assistant: Katrine Meldgaard Kjær (katrinemkjaer@gmail.com)
Recently published by ex oriente:

The Sands of Time.
The Desert Neolithic Settlement at Ayn Abū Nukhayla

edited by Donald O. Henry & Joseph E. Beaver

bibliotheca neolithica Asiae meridionalis et occidentalis (2014)
(with 19 chapters, XI+380 pages, 149 figures including 8 colour illustrations, 64 tables.
hardcover - 118 Euro)

Table of Contents
Acknowledgements, Contact Information for Corresponding Authors
Chapter 1. The Problems, Questions, and Getting the Answers, by Donald O. Henry
Chapter 2. Geology, Landforms, and Depositional Systems in Wadi Rum 13, by Carlos E. Cordova, Regina DeWitt, and Barbara Winsborough
Chapter 3. The Setting, Site Plan, Excavation Strategy, and Integration of Evidence, by Donald O. Henry
Chapter 4. The Stratigraphy, Occupational Phases, and Chronometry, by Donald O. Henry and Joseph E. Beaver
Chapter 5. The Built Environment: Architecture at Ayn Abū Nukhayla, by Joseph E. Beaver
Chapter 6. Hunting and Herding at Ayn Abū Nukhayla: The Vertebrate Faunal Assemblage, by Rebecca M. Dean
Chapter 7. Tracing Herding Patterns at Ayn Abū Nukhayla through Biogeochemical Analyses in Faunal Remains, by Marie Balasse, Jamal Salamah Al Zaidaneen, Rebecca M. Dean, T. Douglas Price, and Donald O. Henry
Chapter 8. Establishing the Environment, Seasonality, and Economy from Plant Micro-Remains: Pollen and Starch, by Aline Emery-Barbier
Chapter 9. Early Crop Cultivation and Caprine Herding: The Evidence from Phytolith and Fecal Spherulite Studies, by Marta Portillo and Rosa M. Albert
Chapter 10. Archaeobotanical Finds from Ayn Abû Nukhayla, by Joy McCorriston and Heidi Ekstrom
Chapter 11. The Technotypology of Chipped Stone Artifacts, by Donald O. Henry, April Nowell, Keith Mendez, Elizabeth Peterson, Matthew Senn, and Heather Rockwell
Chapter 12. Attribute Studies of Points, Perforators, Knives, and Lithic Caches from Ayn Abû Nukhayla, by April Nowell, Jennifer Gutzeit, Colleen Bell, and Donald O. Henry
Chapter 13. Under the Microscope: Edge Wear Analysis of Chipped Stone Artifacts and Intrasite Patterns, by Sean M. Bergin
Chapter 15. The Worked Bone Assemblage from Ayn Abû Nukhayla: Implements and Ornaments, by Ashton J. Spatz and Agatha K. Baluh
Chapter 17. Groundstones and Grinding Technology, by Seiji Kadowaki
Chapter 18. Stratigraphic Identification and Spatial Examination of House Floors at Ayn Abû Nukhayla, by Donald O. Henry, Seiji Kadowaki, and Sean M. Bergin
Chapter 19. Pulling It All Together: Answers to Many Questions, by Donald O. Henry
References Cited

Digital Appendices 2.1, 16.1, 17.1-17.19, and 18.1 can be accessed at http://orgs.utulsa.edu/sands
Recently published by ex oriente:

Am Beginn des Hausbaus
Studien zur PPNB-Architektur von Shkārat Msaied und Baʿja in der Petra-Region, Südjordanien

by

Moritz Kinzel

Inhaltsverzeichnis

Vorwort und Danksagungen

1. Einleitung

2. Die Architektur von Shkārat Msaied (MPPNB)

3. Die Architektur von Baʿja (LPPNB)

4. Exkurs: Traditionelle Architektur

5. Die PPNB-Architektur von Shkārat Msaied und Baʿja im Kontext gesehen: Tendenzen und Strömungen im neolithischen Bauen in der südlichen Levante

6. Zusammenfassung

7. Literatur

8. Anhänge

9. Abbildungsverzeichnis und -nachweis

10. Abbildungstafeln
Editorial Board

Co-Editors
Gary O. Rollefson, Whitman College, Walla Walla
Hans Georg K. Gebel, Free University of Berlin

Managing Editor
Dörte Rokitta-Krumnow, Free University of Berlin

Advisory Board
Ofer Bar-Yosef, Harvard University
Didier Binder, C.N.R.S., Valbonne
Frank Hole, Yale University
Peder Mortensen, Copenhagen Univ.
Hans J. Nissen, Freie Universität Berlin
Mehmet Özdoğan, University of Istanbul
Danielle Stordeur, Archéorient, CNRS, Jalès

Submissions
NEO-LITHICS, Dr. Dörte Rokitta-Krumnow/Dr. Hans Georg K. Gebel, ex oriente, c/o Free University of Berlin, Hütteweg 7, 14195 Berlin, Germany, Emails: d.rokitta-krumnow@gmx.de · hggebler@zedat.fu-berlin.de, Fax 0049 30 98 311 246.
NEO-LITHICS, Prof. Dr. Gary O. Rollefson, Department of Anthropology, Whitman College, Walla Walla, WA 99362, USA, Email: rollefgo@whitman.edu.

Orders (New Subscriptions, Payment of Subscription Renewal, Back Issues)
New subscriptions: via https://www.exoriente.org/bookshop/
Payment of Subscription Renewals: via https://www.exoriente.org/bookshop/ (please, mention the invoice number under Message to ex oriente Bookshop from Customer in the shopping basket) or send credit card details (card type - Visa or Master-, cardholder name, credit card number, expiry date, CVV number) to ex oriente Fax 0049 30 98311246 or by letter to ex oriente, c/o Institute for Near Eastern Archaeology, Hütteweg 7, 14195 Berlin, Germany.

Subscription
Minimum of three years subscription requested = 6 issues, c. 40-50 pages each, 66 Euro for 6 issues/ minimum subscription period (postage included); back issues available; members of ex oriente receive Neo-Lithics free of charge (included in the annual membership fee: 40 Euro for employed members, 15 Euro for students/ unemployed members).

Deadlines
twice a year: 15th of May and 15th of November

Submission Guidelines
Text formats: in Word without formatting; for the general style of text, bibliography, and captions consult this or a recent issue of Neo-Lithics - Illustration formats: individual EPS, TIFF- files or JPEG in high resolutions; illustrations should not be embedded in the Word file. Please, sent a hard copy of the manuscript in case of complex contributions; keep bibliographic references to the utmost minimum. Authors are obliged to present with their submissions formal letters of agreement by copyright owners if they use illustrations, texts, materials, or ideas from oral presentations obtained from sources not their own. Captions of photo and graphic illustrations must mention the author(s) of the photo or graph, even if rights for these are in the hands of the institution providing these materials for publication.
ex oriente respects UN resolutions as well as the project permits of antiquities departments and or the ethics of funding institutions. ex oriente does not publish data obtained in occupied territories or assists the publication of field data not covered by a permit.

Subscription Information
In the upper right part of the address field (envelope) you will find the issue mentioned until which (included) you paid your subscription. If you find an invoice with this issue, a renewal of subscription is necessary for the next three years / 6 issues. If an invoice is not paid after two months it is understood that a prolongation of the subscription is not desired, and no further issues will be send.

Copyright Note
Authors of Neo-Lithics receive a PDF file of their individual contribution upon publication. Please, understand that your contribution is subject to the copyrights of ex oriente Publishers. However, you are licensed to circulate the pdf file of your contribution privately, but beyond this we ask you not to publish it (or parts of it) in the World Wide Web, or in any other form without our prior permission.

Neo-Lithics is published and distributed by ex oriente, Berlin.
Printing House: dbusiness, Berlin - © ex oriente e.V., Berlin - ISSN 1434-6990