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Abstract 

Fossil charcoal has widely been accepted as a direct indicator for the occurrence of 

palaeo-wildfires. In Upper Palaeozoic sediments of Euramerica and Cathaysia, records of 

these remains are relatively common and (regionally and stratigraphically) more or less 

homogeneously distributed in terrestrial sequences. On the other hand, just a few records have 
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been published for the Permian of Gondwana and only recently it has been demonstrated that 

macroscopic charcoals are also common here. Most Permian macroscopic charcoal from 

Gondwana is gymnospermous and has been reported from coal-bearing strata. Macroscopic 

charcoal occurrences are spread out in different sequences and also in distinct stratigraphic 

intervals in the Permian [e.g., Paraná Basin (Sakmarian/Artinskian of Brazil), Karoo Basin 

(Artinskian of South Africa), Damodar Basin (Lopingian of India) and Dead Sea area 

(Changhsingian of Jordan)]. They range from peri-glacial/post-glacial to warm temperate 

climatic systems throughout the Permian. Macro- and micro-charcoal occurrences are 

compared to inertinite incidences to support the pyrogenic origin for these coal macerals and 

to provide an up to date overview on the known evidences of Permian wildfires on Gondwana 

in space and time. 

 

Keywords: Permian; Gondwana; palaeo-wildfire; climate; peat deposition. 

 

1. Introduction 

In modern ecosystems, fire is a significant source of disturbance (Bowman et al., 2009; 

Flannigan et al., 2009) and can be compared to herbivory as an important factor of 

modification in different biomes (Bond and Keeley, 2005). In addition, wildfires have 

occurred more or less regularly in different ecosystems since the appearance of the first 

embryophytic land plants (Glasspool et al., 2004) and it can be assumed that, during past 

periods of the Earth’s history, these events would have played a role in the shaping/evolution 

of different biomes (Preston and Schmidt, 2006; Scott, 2010; Scott and Stea, 2002).  

Despite geochemical [pyrogenic polycyclic aromatic hydrocarbons (PAHs)] and petrological 

evidence (interinites), the most reliable method to reconstruct the occurrence of palaeo-

wildfires in different palaeoenvironments and time periods is the occurrence of macroscopic 

and microscopic fossil charcoal in clastic sediments (sensu Jones and Chaloner, 1991; Scott, 
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2010). Such remains, occurring in different geological levels around the world, confirm the 

occurrence of (palaeo)wildfires since the Silurian (Glasspool et al., 2004) up to the 

Quaternary (Scott, 1989; 2000; 2010; MacDonald et al., 1991; Scott and Glasspool, 2006; 

Flannigan et al., 2009).  

Direct evidence of Late Palaeozoic palaeo-wildfires has largely been studied in the 

Northern Hemisphere for the last two decades and macroscopic fossil charcoal remains are 

well described from Europe (e.g., Scott, 1990; Scott and Jones, 1994; Falcon-Lang, 2000; Uhl 

and Kerp, 2003; Uhl et al., 2004, 2008), North America (e.g., Sander, 1987; Sander and Gee, 

1990; Falcon-Lang, 2000; DiMichele et al., 2004) and China (e.g., Wang and Chen, 2001; 

Shen et al., 2011) and used to support the pyrogenic origin of inertinite in coals (Scott, 2000, 

2010; Scott and Glasspool, 2007). Additionally, fossil charcoal and other evidence of palaeo-

wildfires from the Northern Hemisphere is also widely used to reconstruct fire related aspects 

of a number of palaeoenvironmental and palaeoclimatic issues (e.g., Belcher et al., 2010a; 

Bond and Scott, 2010; Uhl et al., 2010, in press). 

In an attempt to contribute to a palaeo-wildfire scenario concerning Gondwana during the 

Permian, this paper has the primary goal of summarizing information about fossil evidence 

for palaeo-wildfires coming from different regions all over Gondwana. The occurrences of 

fossil macro- and micro-charcoals are compared to inertinite occurrences to support the 

observation that, contrary to earlier assumptions (e.g., Falcon, 1989; Hunt, 1989; Taylor et al., 

1989) which still persist in the literature (Hower et al., 2011; Richardson et al., 2012), the 

majority of macerals belonging to this group are of pyrogenic origin (Scott, 2000, 2010 and 

references cited therein; Scott and Glasspool, 2007).  

 

2. A case for the pyrogenic origin of Permian Gondwana inertinite 

The occurrence of palaeo-wildfires in the Permian of Gondwana was not accepted for a 

long time. This denial is probably based on different opinions concerning the 
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definition/identification of fossil charcoal. Scott (2000) dedicated a chapter of his review 

paper on the pre-Quaternary history of fire to the so called “Problem of the Gondwana 

inertinites”. The controversy was based on the statements of authors like Falcon (1989), Hunt 

(1989) and Taylor et al. (1989) who considered it to be improbable that fire was responsible 

for the high inertinite levels (in some cases more that 50%) observed in many (but not all!) 

Permian coals from Gondwana. 

Falcon (1989) argued that the subarctic to cold temperatures which dominated in 

Gondwana during the Permian, when the coals were deposited, contributed to a low plant 

growth and thus slow accumulation of biomass. Consequently, the degradation of the plant 

biomass should have also been gradual or somewhat inhibited, allowing for the formation of 

inertinite by processes other than fire (e.g., freeze-drying). 

Hunt (1989) and Taylor et al. (1989) also proposed that the cold-climate conditions have 

to be seen as responsible for high inertinite levels of Gondwana Permian coals. They stated 

that the low temperatures in the mires must have been responsible for the reduction of the 

plant matter decomposition by microorganisms and, in such a cold and dry environment, 

partially or totally humified plant tissues would, if exposed to air, be 'freeze-dried' with 

minimal oxidation. 

For a long time fire was not considered as a possible origin for the abundant inertinite 

present in many Gondwana Permian coals (Falcon, 1989; Hunt, 1989; Taylor et al., 1989, 

1998) in contrast to opinions concerning northern hemisphere inertinite. So, while fires were 

considered to have been common events in the Late Palaeozoic Eurasian peat forming 

environments, and the co-occurrence of inertinite and macroscopic as well as microscopic 

fossil charcoal in the same levels was largely accepted/expected because of their common 

pyrogenic origin, in the Gondwana Realm it was neither considered the only nor a significant 

factor at all (Côrrea-da-Silva and Wolf, 1980; Niekerk et al., 2010; Silva and Kalkreuth, 2005; 

Silva et al., 2008). In this way, despite high inertinite levels, the occurrence of fossil charcoal 
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was not accepted as evidence of palaeo-wildfires for the Late Palaeozoic Gondwana until the 

last decade (Jasper et al., 2008). Thus, it seems possible that previous researchers simply may 

have overlooked macroscopic fossil charcoal remains from this age and area, as other authors 

(Jones, 1993; Scott, 2010; Uhl et al., 2010) assumed before for other examples. 

The present study, although mainly focusing on macroscopic as well as microscopic 

fossil charcoal (sensu Jones and Chaloner, 1991; Scott, 2010) from the Gondwana Permian as 

primary (and undisputed) evidence for the occurrence of palaeo-wildfires; also discusses the 

“Problem of the Gondwana inertinites” (Scott, 2000). Therefore, a review of the Permian 

occurrences published to date of the three palaeo-wildfire indicators [inertinite, PAHs and 

(macroscopic/microscopic) fossil charcoal] was carried out in order to understand large scale 

regional and temporal trends (see Tables 1-3 and Fig. 1). The database is based on data 

compiled by Abu Hamad et al. (2012) supplemented by recently published works and 

additional references that have been discovered by continuing literature surveys [for 

comments why such a database will probably be incomplete with regard to the existing data 

see Diessel (2010) and Abu Hamad et al. (2012)].  

The data on charcoal occurrence are collated by Stages (cf. Tables 1-3), following the 

approach used by Abu Hamad et al. (2012). However, for the Middle Permian, the dating of 

most samples was too imprecise to follow this approach consistently. The Middle Permian 

samples have therefore been pooled into a single bin that corresponds to an epoch (i.e., the 

Guadalupian) in Figure 2. Although such an approach leads to bins which are not equally 

long, bins with equal duration (as used by Glasspool and Scott, 2010) have not been used, as 

dating for most records is not good enough to provide reliable absolute ages. 

Different proportions of inertinite in individual coal seams show that there are short scale 

regional and temporal trends in adjacent coal deposits (see compilations in Diessel, 2010; 

Glasspool and Scott, 2010). However, the reconstruction of such small scale trends is beyond 
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the scope of the present study, as these trends could only be reconstructed for a few regions 

and time-slices and not for the entirety of the area covered by this study.  

 

3. The general Gondwana palaeobotanical scenario during the Permian 

It is worth highlighting that palaeo-wildfire events only occurred when suitable fuel 

(=biomass) was present, and that during the Permian vegetation was one of the most 

important ecological factors for the occurrence of wildfires. Fire dynamics depends on and 

reflects the vegetation (as well as climate and atmospheric oxygen; cf. Scott, 2000 for 

discussion of the so-called fire-triangle) which occupied the burning area, creating a strong 

connection between both. So, a general view about the composition and development of the 

vegetation which could potentially be burned is also necessary if palaeo-wildfire is in 

discussion. To give the non-palaeobotanist an idea about the development of vegetation on 

Gondwana during the Permian we provide a short summary. 

An abrupt change from glacial to post glacial deposits of Early Permian age on the latest 

glaciation episode of the Late Palaeozoic glaciation of Gondwana (López-Gamundí, 1997; 

López-Gamundí and Buatois, 2010) records the rapid withdrawal of ice from depositional 

basins throughout Gondwana (Isbell et al., 2003). Palaeobotanical data (Ziegler, 1990; Cuneo, 

1996; Ziegler et al., 2003) have shown that provinciality of Gondwana changed significantly 

during the course of the Permian, mainly influenced by palaeogeographic and palaeoclimatic 

parameters (Wagner, 1993; Rees et al., 2002). Waning of Early Cisuralian (Asselian-

Sakmarian) glaciation in the Gondwana continent was manifested in floral associations 

preserved within sandstones and shales deposited in glacio-fluvial and glacio-lacustrine 

palaeoenvironments. In the South American subcontinent (Eastern and Southern Brazilian 

Paraná Basin and Western Argentina) palaeobotanical evidence point to a single 

phytogeographic unit, evidenced by the presence of endemic forms as Euryphyllum, Rubidgea 

and Chiropteris in hygrophytic setting, mostly dominated by equisetaleans and gymnosperms 
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(glossopterids, conifers, cordaitaleans and ginkgophytes) with a Botrychiopsis understory 

(Cuneo, 1986; Guerra-Sommer and Cazzulo-Klepzig, 1993; Mune et al., 2012). 

Particularly in Patagonia, the taxonomic diversification and the thermophilic ecological 

conditions of the palaeofloras, quantitatively dominated by conifers and tree ferns were, 

considered as consequences of the position of the Patagonia block, which was separated from 

West Gondwana and situated within lower latitudes during the Permian (Cuneo, 1996). 

Alternatively, these ecological peculiarities are related to the insular position of the 

subcontientet (Chumakow and Zharkov, 2002). The diversity of plant associations still 

continued during the Sakmarian, suggesting that this region remains phytogeographically 

isolated in Gondwana (Cuneo, 1996). 

The sparse occurrence of fossil plant assemblages dominated by Gangamopteris and 

Cordaites foliage associated with glacial deposits from India (Talchir Formation) and Africa 

(Dwyka Formation), indicate extreme conditions for plant growth, which probably took place 

during interglacial intervals in peri-glacial environments (Chandra and Chandra, 1987; 

Chandra, 1992; Chandra et al., 1992; Bamford, 2004). The extreme climatic conditions 

resulting from the glacial cover of the Sydney Basin in Eastern Australia and Tasmania were 

responsible for the lowest vegetation diversity in Gondwana during the Early Permian, mainly 

represented by the herbaceous Botrychiopsis “tundra”. According to Retallack (1980) this was 

the only vegetational formation able to grow under these climatic conditions in permafrost 

areas. 

By the Middle Cisuralian (Sakmarian) Gondwana shows ameliorated climatic conditions 

and a great increase in macrofloral diversity was detected from the dominantly glacial-

influenced to the post-glacial strata, probably due to the general retreat of the ice cover. 

Western Gondwana (South America) had the richest plant assemblages, and Eastern 

Gondwana (Africa, India, Australia and Antarctica) present less diverse plant associations due 

to continuing glacial influence (Cuneo, 1996; Bamford, 2004). 
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South America (South  Brazil and Northwest Argentina), was located in middle latitudes, 

under a seasonal climate, exhibiting market dry seasons (Iannuzzi et al., 2006); palaeofloras 

were preserved in fluvial-lacustrine settings, characterized by the dominance of glossopterids, 

cordaitaleans, conifers, early ginkgophytes and fern understory. In the Southern Brazilian 

Paraná Basin, by the end of the Sakmarian, subarborescent lycopsids (Brasilodendron) or 

glossopterids (Glossopteris) are the most representative forms (Botrichyopsis, ferns and 

Lycopodites remain as understory) in different roof-shale floras (Jasper et al., 2005; Guerra 

Sommer et al., 1991, 2008a), associated to the main coal seams originated in paralic, lagoon-

barrier settings (Holz, 2003). 

The plant assemblages from the eastern African, Australian and Antarctic subcontinents, 

mainly recorded immediately above glacial deposits, show low generic diversity and 

Glossopteris and Cordaites are the most common genera. Peat-forming environments in 

fluvial and lacustrine settings in the Bowen Basin of Australia (Draper and Beeston, 1985) 

and Antarctica (Cuneo et al., 1993) indicate improvement of climatic conditions. Retallack 

(1999) reported from Australia the occurrence of coals formed by accumulating peat in 

narrow mires within permafrost areas, from plant-associations showing “taiga” affinity, which 

consisted mainly of probably deciduous Gangamopteris plants. 

The palaeoflora associated to thin coal seams of the Karharbari Stage (India – 

Sakmarian), formed in fluvial systems, and indicated dominant woodland vegetation 

composed by glossopterids and some conifers (Buriadia) with accompanying understory 

herbaceous and shrubby plants (e.g., Botrychiopsis), rare ferns (e.g., Neomariopteris) and 

some articulates (Chandra and Chandra, 1987; Bhattacharya, 1991; Srivastava, 1997). 

By the end of the Cisuralian, the eastern-western major Gondwana palaeofloristic 

differentiation persisted. The western South American region (Brazil and Northwest 

Argentina) was part of a temperate belt with cold winters and warm summers (Scotese, 2002). 

A diversified plant association can be inferred by the presence of glossopterids, cordaitaleans, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 9 

conifers, early ginkgophytes, subarborescent lycopsids, ferns, equisetaleans and sphenophylls. 

This floral composition led to infer forested areas associated to fluvial and paralic settings. 

The presence of coal seams in Artinskian coal-bearing sequences at eastern and northern 

Brazilian Paraná Basin (Holz et al., 2010) indicates peat forming areas as consequence of wet 

conditions prevailing throughout the year in lowlands associated to deltaic systems. 

Most of the African taxa at the end of the Cisuralian interval are common to the other 

Gondwana regions, but the presence of some endemic forms (e.g., Azaniadendron) can 

indicate that this region corresponds to an ecotone (Cuneo, 1996), under moist and cool 

temperate climatic conditions. Glossopterids were dominant and marattialean ferns were 

inferred as the understory forms in plant associations developed in delta plains, where peat 

deposition has commonly occurred; lycopsids and sphenophytes are represented as 

monospecific stands in inter-distributary ponds (Anderson and Anderson, 1985). 

The eastern Indian and Australian taphofloras show lower generic diversity than African 

and South American regions, but dense forested vegetation, strongly dominated by 

glossopterids, cordaitaleans and sphenopsids, grew in cool temperate climatic conditions 

(Rees et al., 2002). Peat deposition areas occurred in fluvio-deltaic systems at the Barakar 

Formation from India (Chandra and Chandra, 1987; Mitra, 1991; Srivastava, 1992). 

Otherwise, peat generating palaeofloras dominated by glossopterid and cordaites plants, 

associated occasionally to small lycopsids (Cyclodendron), sphenophytes (Raniganjia, 

Schizoneura and Trizygia) and shrubby ferns, have been referred for the Sidney and Perth 

Basins in Western Australia (McLoughlin, 1993). 

Palaeofloras from Antarctica, which remain palaeogeographically in a sub-polar to polar 

location, under a yearly seasonal humid climate, are dominantly composed of woodland 

glossopterids, rare cordaitaleans and sphenopsids (Cuneo et al., 1993). 

From the beginning of the Guadalupian there was a decrease in the number of plant 

assemblages and also in taxonomic diversity, indicating deterioration in climate resulting 
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from generally drier conditions. Additionally, the absence of coal beds, suggest severe 

climatic drying, which is probably associated to the Permian icehouse/hothouse transition 

(Gastaldo et al., 1996). The South American subcontinent occupied mid-latitudes, under a 

temperate regime with a strong dry season. Brazilian plant assemblages are composed mainly 

of lycopsids (Cyclodendron, Lycopodiopsis) and the conifer Krauselcladus. The presence of 

other gymnosperms is evidenced by the presence of different wood morphogenera (Mussa, 

1986; Merlotti and Kurzawe, 2011) in lignofloristic associations. Plant growth patterns 

inferred by growth ring analyses indicate a “Mediterranean-type” of climate (Alves and 

Guerra-Sommer, 2005). 

Indian palaeofloras are also represented by low diversity and sparse woodland 

associations dominated by glossopterids. The common presence of the lycopsid Cyclodendron 

and also the occurrence of similar fossil wood morphogenera in South American and Indian 

subcontinents seems to support the hypothesis of Cuneo (1996), which says that both South 

American and Indian areas would have formed, during the Guadalupian, part of the same 

phytogeographic unit, experiencing similar climatic conditions. 

In Patagonia, palaeofloras remain taxonomically distinct from other subcontinents of 

Gondwana; Gangamopteris and Cordaites are absent, whereas, tree ferns are taxonomically 

diversified. Few taphofloras have been recorded from Antartica, showing fragmented 

Glossopteris leaves (Archangelsky, 1990). 

The similarity between Guadalupian palaeofloras from African, Australian and Indian 

regions in high latitudes and in temperate conditions, is evidenced by the presence of 

endemics (e.g. the sphenophyte Raniganjia) and also by distinct plant assemblages: 

monospecific stands of sphenophytes (Schizoneura africana in Africa), and dense thickets of 

glossopterids. Both groups are related to different sites, within river channels environment in 

a deltaic littoral system (Anderson and Anderson, 1985; McLoughlin, 1993). 
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At the Guadalupian-Lopingian boundary eastern Gondwana seems to return to more 

humid climatic conditions, allowing the formation of extended peat-swamps in the Lopingian, 

whereas the western sector is affected by seasonal and strong dryness (Rees, 2002). 

Consequently, scarce floral associations have been found in South America, whereas diverse 

plant assemblages are found in Africa, India and Australia, and lower floral diversity 

associations are found in Antarctica. 

In South America, most of the floral associations are concentrated in the Brazilian Paraná 

Basin, located around mid-latitudes. Low diversity plant associations are characterized by the 

dominance of ferns (Pecopteris and Astherotheca), sphenopsids (Schizoneura, Phyllotheca 

and Sphenophyllum) and glossopterids as less common elements. Floral remains are preserved 

in siltstone and sandstone sequences interpreted as fluvial settings associated with eolian 

facies under warm temperate climate (Rohn and Rösler, 1987, 1989). 

In the African region, palaeogeographically constrained to high latitudes, glossopterids 

and sphenophytes (Phyllotheca) were dominant and the conifer Pagiophyllum (showing 

affinities with modern conifer taxa) occurred as a rare element in plant assemblages preserved 

in sediments associated to delta plains and fluvial floodplains, under temperate regime with a 

strong dry season, as suggested by the common presence or red beds (Bordy et al., 2011). 

Indian (Raniganj Formation) and Australian (Bowen-Sydney Basin) palaeofloras are very 

similar and the most taxonomically diverse in Gondwana at the Lopingian. Endemics such as 

lycopsids (Cyclodendron), sphenophytes (Trizygia, Gangamopteris), ferns (Dichotomopteris) 

and cycads (Pseudoctenis) are common elements. Most of the Indo-Australian plant 

assemblages are associated with thick coal-measures derived from glossopterid swamps 

forests associated to understory ferns, developed in alluvial plains drained by meandering 

streams under seasonal cool-temperate regimes (Retallack, 1980; McLoughlin, 1993; 

Srivastava, 1997). 
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In Antarctica, different Glossopteris morphotypes are strongly dominant elements in 

plant assemblages found in sedimentary sequences interpreted as alluvial valleys drained by 

braided or meandering rivers (Cuneo et al., 1993). Peat deposition still continued in 

backswamp environments, building up expressive coal seams.  

Changes in climate and tectonics at the end of the Changhsingian (Lopingian) resulted in 

dramatic upheavals within wetland ecosystems and peat-forming wetlands disappeared after 

the end Permian extinction (Greb et al., 2006). The preceding glacial period had ended and 

the “cool” zonal and markedly seasonal climate was replaced by a “warm equable” virtually 

non-seasonal and unseasonal climate. The biotic crisis was global and caused to a greater 

extent by biospheric processes than by momentary external influences. The new climatic 

organization remained on Earth for more than two hundred million years (Roscher et al., 

2011). 

 

4. Permian palaeo-wildfires on Gondwana in space and time 

4.1. South America 

Macroscopic fossil charcoal remains were recovered from different sites of the coal-

bearing strata of the Rio Bonito Formation (Sakmarian/Artinskian) along the Northern and 

Southern borders of the intracratonic Paraná Basin by Jasper et al. (2006, 2008, 2011a, 

2011b). Peat deposition occurred in a cool temperate climate, at 50°S palaeolatitude (Rees, 

2002; Scotese, 2002). 

Most of this material belongs to different gymnosperm wood types and, only in two 

localities [Bonito I mine (Santa Catarina coal Basin, Jasper et al., 2011b) and Quitéria outcrop 

(Rio Grande do Sul state, Jasper et al., 2008)] charred wood attributed to sub-arborescent 

lycopsids (Brasilodendron pedroanum) was found. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 13 

The characteristics (size > 1.0 mm and absence of abraded edges) of these macroscopic 

fossil charcoal pieces allowed Jasper et al. (2011b) to infer that the charred plant fragments 

had an autochthonous/hypautochthonous origin. 

In the coal levels and coal-bearing strata in which the macroscopic charcoal remains 

described by Jasper et al. (2008, 2011a, 2011b) were discovered, inertinite macerals are also 

present in high proportions (cf. Tables 1, 2).   

 

4.2. Africa (incl. Arabia and Madagascar) 

So far the macroscopic evidence for Permian wildfires in Africa is rather scarce. 

Glasspool (2003a) described the presence of gymnosperm charcoal within different coals 

belonging to the Vryheid Formation (Karoo Basin) of the Witbank and the eastern Transvaal 

Coalfields, and Glasspool (2003b) reported gymnosperm wood and charred peat fragments 

from the No. 2 coal seam of the Vryheid Formation of the Witbank Basin (Artinskian of 

South Africa). In both cases, the author correlated the abundance of these charcoal fragments 

to the inertinite maceral groups and indicated a positive relationship between inertinite-rich 

lithotypes and charcoal abundance. 

Additional macroscopic evidence for fires has recently been discovered in clastic 

sediments of the Vryheid Formation at the Vereeniging coal field in South Africa. They 

consist of gymnospermous wood which exhibits all diagnostic characteristics of charcoal 

(Scott, 2000, 2010): a) black streak, b) silky lustre, c) splintery appearance, d) excellent 

preservation of anatomical details and e) homogenized cell walls.  

Macroscopic fossil charcoal remains from the Vryheid Formation were collected from the 

Leslie Collection (1892-1904), which is housed in the Bernard Price Institute of 

Palaeontological Research (Johannesburg, South Africa). The macroscopic fossil charcoal 

remains come from a plant-bearing horizon overlying the upper most coal seam on the Vaal 

River, which is included in the coal-bearing Vryheid Formation (informally known as Middle 
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Ecca) of Veereniging, in the Northern Karoo Basin (Artinskian). The locality was at an 

approximate palaeolatitude of 55° to 60°, and experienced cool temperate climate conditions 

(Cairncross and Cadle, 1988; Holland et al., 1989).  

The sizes of the collected macroscopic fossil charcoal particles are homogenous, ranging 

from 10.2 × 3.0 × 1.0 mm to 26.0 × 5.0× 1.2 mm. Observations under SEM show that the 

woody tissues had been shattered into smaller pieces during diagenetic compression (Figs. 

3A, 3B) and the cell walls were homogenized (Fig. 3C). The wood radial section showed 

abietoid anatomical features and exhibited uniseriate pitting (Figs. 3D-3G), pointing to a 

conifer affinity. In tangential section clearly defined uniseriate rays are composed of 

parenchymatous cells (Fig. 3H). Despite the well preserved anatomical features, no specific 

taxonomic affinities could be established due to the absence of the diagnostic characters like 

cross-field pits.     

Uhl et al. (2007) described macroscopic fossil charcoal, of assumed corystospermalean 

affinity, from clastic sediments from a single locality belonging to the Late Permian 

(Changhsingian) Um Irna Formation of Jordan. This area was located at the northern margin 

of Gondwana in the seasonally dry palaeotropics during time of deposition. During field work 

in 2011 (by DU and AAH) additional macroscopic charcoals were discovered in three more 

localities belonging to this formation. These new charcoal localities also include the plant-

bearing locality previously described by Mustafa (2003), which represents organic rich 

wetland sediments deposited in an oxbow lake. The only African (s.l.) evidence for Permian 

PAHS comes also from the Um Irna Formation of Jordan (Dill et al., 2010). 

Inertinite is known from the Sakmarian-Artinskian of Madagascar (Alpern and 

Rakotoarivelo, 1972), as well as from a number of coal fields of Artinskian and Kungurian 

age in South Africa, Zambia, Mozambique, Tanzania and Zimbabwe (for details see Table 2). 

For inertinite, Glasspool (2003a) presented unequivocal evidence that the inertinite from coals 
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of the Artinskian Vryheid Formation of South Africa are of pyrogenic origin. Guadalupian 

intertinites are only known from a number of boreholes in Mozambique (Falcon et al., 1984). 

 

4.3. Indian subcontinent 

So far only a single study provides macroscopic evidence for palaeo-wildfires in the Late 

Permian (Lopingian) of India (Jasper et al., 2012). These gymnospermous charcoal remains 

were associated with well-preserved Glossopteris leaves, indicating that palaeo-wildfires 

probably affected vegetation dominated by this plant group. Based on the absence of abraded 

edges, Jasper et al. (2012) inferred an autochthonous/hypautochthonous origin for this 

material. 

Inertinite is known from a number of Sakmarian to Kungurian (-Rodian) coal deposits 

from India, Bangladesh and Bhutan (cf. Table 2) and less frequently from the Lopingian of 

India and Bhutan (cf. Table 2). Coals were interpreted by Navale and Saxena (1989) as being 

deposited under high humidity and warm temperate climate at approximately the same 

palaeolatitude as other Gondwana coals during this period (cf. Fig. 1). 

Recently Schneebeli-Hermann et al. (2012) reported the occurrence of intertinite as 

components of the particulate organic matter contents of palynological samples from the latest 

Permian and Early Triassic of the northern margin of Indian Plate in South Tibet. This is an 

example where the term inertinite is obviously used as a synonym for micro-charcoals. 

 

4.4. Australia and New Zealand 

Inertinite is known from numerous Australian coals deposited between the Artinskian and 

the Changhsingian (Table 2 and Fig. 1). However, the majority of these records come from 

the Guadalupian and Lopingian.  

Macroscopic fossil charcoal was so far identified by Glasspool (2000) only in the Sydney 

Basin, eastern Australia, at the Lower Whybrow coal seam (Hunter coalfield) Mount Leonard 
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Formation (Wuchiapingian). The presence of coal seams at the top interval of the 

Wuchiapingian at this site, under cool temperate conditions, which is in contrast to the warm 

climates which occurred in southern Gondwana subcontinents can be explained by the 

Gondwana rotation about a pole near Australia during the Permian, allowing for the 

maintenance of cold and cool temperate environmental conditions (Roscher et al., 2011). 

These environments developed at palaeolatitudes around 55°S (Embleton, 1984; Glasspool, 

2000). 

The coal and coal-bearing strata are interbedded with volcanic tuff horizons whose center 

of origin was a volcanic area located in the east of the Sydney Basin (Jones et al., 1987; 

Brakel et al., 1995; Sniffin and Beckett, 1995; Dutta, 1998). The volcanic activities could 

have acted as an ignition source for the palaeo-wildfires, confirmed by the presence of the 

macroscopic fossil charcoal remains (Glasspool, 2000). The fire event as well as the extensive 

ground fire which probably reached the peat-forming environment and the hinterlands, has 

been considered by Glasspool (2000) as being the cause of subsequent erosion responsible for 

the mixing of autochthonous and allochthonous macroscopic fossil charcoal in the coal seam. 

Foster et al. (1997) also discovered microscopic fossil charcoal remains in palynological 

samples from a core in Western Australia (Perth Basin). Here micro-charcoal remains 

occurred in the top-most part of the Permian within this core, but are not registered so far 

immediately after the Permian-Triassic boundary (Uhl et al., 2010; Abu Hamad et al., 2012). 

The same pattern can be seen for pyrogenic PAHs in the same core (Grice et al., 2007). This 

implies that there was probably a major change in fire-regime at the boundary, also evidenced 

by similar patterns in other regions (e.g., Cathaysia; Shen et al., 2011; Abu Hamad et al., 

2012), but so far we do not have enough data from other regions of Gondwana to recognize 

this as a general or even global pattern. 

Another report of microscopic charcoal comes from palynological studies on the Late 

Permian (Wuchipinigan – Changsinghian?) Kuriwao Group of New Zealand (Crosbie, 1985; 
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Campbell et al., 2001). Here charcoal and wood fragments dominate most of the 

palynological residues (Crosbie, 1985), pointing to frequent and/or abundant regional fire 

activity in high latitudes. 

 

4.5. Antarctica 

Inertinite is also known from Lopingian coals of East Antarctica (Holdgate et al., 2005; 

and references cited therein). These peats where deposited almost direct in juxtaposition to the 

Late Permian Indian basins with peat formation (cf. Figure 1). 

 

5. Discussion 

Most of the evidence for palaeo-wildfires so far reported from the Permian of the 

Gondwana Realm comes directly from coals or clastic levels directly associated with coal 

seams. These coals are considered as climate-sensitive sediments, indicating cool temperate 

biomes for the Permian of Gondwana (Rees, 2002). During this time interval Pangaea was a 

relatively diverse region in terms of climate and topography. Global geographic patterns of 

Permian climates were reconstructed by Rees (2002) showing a significant latitudinal climate 

gradient, similar to the modern, interglacial situation. 

These climatic conditions, in connection with other environmental variables (e.g., 

vegetation, topography, geography) allowed for the development of the Glossopteris Flora 

during the Asselian icehouse stage, which was submitted to different environmental pressures 

(cold and dry), including fire. The climate also created suitable conditions for the formation of 

the Gondwana Permian coal seams and the deposition of associated clastic deposits. The 

diverse fossil charcoal remains which are relatively widespread across the Gondwana 

supercontinent have been described from many stratigraphic levels whitin these deposits. 

Deposition of peats started directly after the deglaciation, during the Asselian-Sakmarian, in a 

cool temperate biome (Rees, 2002), stratigraphically extending up to the Permian-Triassic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 18 

boundary. The same is true for the occurrence of wildfires within these environments, given 

the pyrogenic origin of inertinite (cf. Table 2 and Fig. 1). The assumed climate can also be 

used as an argument against a freeze-drying origin for Gondwana inertinite (Falcon, 1989), as 

temperatures were probably too high for intensive and wide-spread extreme freezing 

conditions. In addition, so far no mechanism other than charring has been experimentally 

shown to be able to produce charcoal. 

The lowland-wetland and peat-generating plant associations were components of a 

Glossopteris Flora, dominated by sub-arborescent and herbaceous lycopsids, pteridosperms 

and ferns, as well as glossopterids, cordaitaleans, rare ginkgoaleans and conifers (Retallack et 

al., 1977; Anderson and Anderson, 1985; McLoughlin, 1993; Guerra-Sommer et al., 1995; 

Glasspool, 2000, 2003a). As summarized above, the same plant groups were present in almost 

all the subcontinents, but with different diversity and dominance patterns in each site.  

The accumulation of organic matter in the peat and associated clastic levels was, in a general 

view, mainly hypautochtonous, but both autochthonous and hypautochthonous/allochthonous 

conditions were considered by Glasspool (2003b) for South African coals. Coal deposition 

was related to paralic and fluvial settings, and the peat-formation was placed in back-barrier 

environments for Brazil (Alves and Ade, 1996; Holz, 1998), in large flat coastal lowlands for 

South Africa (Falcon et al., 1984; Cairncross, 2001); anoxic floodplains for India 

(Mukhopadhyay et al., 2010); and deltaic and fluvial systems with a freshwater coastal plain 

setting supporting also marsh and floodplain communities for Australia (Glasspool, 2000). 

The presence of macroscopic fossil charcoal remains in sandy levels of the uppermost 

Permian on northern Gondwana [Jordan (Uhl et al., 2007)], when warm but seasonally dry 

climatic conditions prevailed, as well as micro-charcoal from Australia (Foster et al., 1997) 

and Tibet (Schneebeli-Hermann et al., 2012) provide direct evidence that fires were still an 

important disturbance factor on Gondwana towards the end of the Permian. 
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The continuing research and increasing interest about the subject has shown that there are 

probably many more remains still to be discovered in the Late Palaeozoic, especially the 

Permian of Gondwana. The abundance of evidence for wildfires in temperate biomes on 

Gondwana demonstrates that wildfires occurred in several regions and time-slices during the 

Permian in Gondwana, correspond to the transition from a cold to cool and warm climate 

interval. The estimated high atmospheric oxygen concentration (e.g., Bergmann et al., 2004; 

Berner, 2009; Glasspool and Scott, 2010), which peaked during the Early Permian (Fig. 2), 

made vegetation highly flammable even under wet conditions (Belcher et al., 2010b). The 

scarcity of charcoal remains after the cessation of peat deposition in the warm Late Permian, 

despite estimations of elevated O2 levels until at least the latest Permian (Fig. 2), may be 

attributed to climatic change that have brought about directional changes in the frequencies 

and magnitude of these fire events (DiMichele et al., 2004). They could also have been a 

result of taphonomic bias (cf. Uhl et al., 2004, 2010; Abu Hamad et al., 2012). 

As stated above, the presence of coal seams in the Wuchiapingian of Australia can be 

explained by the rotation of Gondwana around a pole near Australia during the Permian 

(Roscher et al., 2011). While the Sydney Basin remained transitional between cold and cool 

climates, this movement allowed the Paraná Basin to move northward into the warm, semi-

arid biome (Guerra-Sommer et al., 1995). Furthermore, the intermediate Karoo Basin (South 

Africa) and Indian Gondwana basins showed some degree of warming during the Sakmarian-

Wordian interval (Chandra and Chandra 1987; Falcon, 1989). 

The great majority of the macroscopic charcoal remains from the coals or clastic levels 

directly associated with coal seams (representing wetland/peatland palaeofloras) are of the 

araucarioid woody gymnosperm type. Most of them show the Agathoxylon pattern 

(Glasspool, 2000; Jasper et al., 2008, 2011a, 2011b, 2012), which represents a wide range of 

gymnosperm plants and an even broader taxonomic spectrum, including glossopterids and 

lycopsids. On the other hand, the distinctive wood architecture exhibited by charcoal pieces 
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similar to those of modern Taxaceae (Jasper et al., 2011b) probably represents taxa which are 

so far not recognized from the contemporary adpression/compression-palaeoflora. These taxa 

probably lived in areas adjacent to contemporaneously rising uplands. 

The presence of conifer derived charcoal supports previous data about a variety of 

conifers which have been reported from a range of lowland environments within the 

preservation window. They range from typical wetlands [e.g., Paranocladus, Coricladus and 

Buriadia (Guerra-Sommer and Bortolluzi, 1982; Anderson and Anderson, 1985; Saxena et al., 

1986; Pant and Singh, 1987; Tiwari and Tripathi, 1987; Cuneo, 1996; Singh et al., 2003; 

Ricardi-Branco and Rösler, 2004; Jasper et al., 2005)] to the margins of the broad basinal 

lowlands [Walkomiella (Mcloughlin, 1993)]. Taking into account the diversity of 

palynological and floral data from coal-bearing strata in Permian Gondwana (Hart, 1967; Lele 

and Srivastava, 1980; Anderson and Anderson, 1985; Tiwari and Tripathi, 1987, 1992; 

McLoughlin, 1993; Millsteed, 1994, 1997; Guerra-Sommer et al., 1995; Jha et al., 1996; 

Foster et al., 1997; Semkiwa et al., 1998, 2003; Cazzulo-Klepzig, 2001; Jha, 2006), the rarity 

or even the absence of non-gymnosperm charcoal is somewhat surprising. However, it is 

possible that this pattern may reflect palaeoecologic peculiarities (e.g., dominance-diversity 

patterns) in distinct clastic and peat forming environments, as well as different factors like 

complete burning and/or taphonomic bias (Glasspool, 2003b). 

In addition, Jasper et al. (2011a, 2011b) considering, amongst other reasons, the 

occurrence of macroscopic fossil charcoal remains in localities in which the presence of 

inertinite has previously been reported, reinforced the connection between palaeo-wildfires 

and the observed high inertinite contents for these localities. Based on this, Jasper et al. 

(2012) also stated a possible connection between the events from which the macroscopic 

fossil charcoal originated and those which produced the inertinite in the Indian Gondwana 

subcontinent. Following previous statements of Guo and Bustin (1998), Glasspool (2000) also 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 21 

inferred that almost all inertinite in the Australian Permian peat swamps may be attributed to 

wildfire.  

Although some authors (Falcon, 1989; Hunt, 1989; Taylor et al., 1989, 1998) have argued 

that the high levels of inertinite group macerals in the Gondwana coals and associated rocks 

cannot have originated exclusively from pyrogenic activities, the co-occurrence of fossil 

charcoal, inertinite and PAHs at individual localities cannot be ignored (Tables 1, 2, 3). 

Authors like Scott (2000, 2010), Scott and Stea (2002), Scott and Glasspool (2006, 2007), 

Glasspool and Scott (2010) and Hudspith et al. (2012) provided a wealth of evidence that 

almost all inertinite macerals are charcoal, which means they are causally connected to the 

occurrence of palaeo-wildfires. A probable consequence of these divergences can be 

exemplified by the comparably large number of researchers who have worked so far on 

evidence of palaeo-wildfires from the Late Palaeozoic of Eurasia (e.g., Sander, 1987; Sander 

and Gee, 1990; Scott, 1990, 2000, 2010; Scott and Jones, 1994; Falcon-Lang, 2000; Wang 

and Chen, 2001; Uhl and Kerp, 2003; DiMichele et al., 2004; Uhl et al., 2004, 2008; Shen et 

al., 2011; Hudspith et al., 2012), in contrast to the low number of researchers working on 

pyrogenic activities in Gondwana for the same time interval (Glasspool, 2000, 2003a; Uhl et 

al., 2007; Jasper et al., 2008, 2011a, 2011b, 2012). 

Despite this discrepancy, the recently published, detailed descriptions of fossil charcoal 

remains made from different Permian levels in different localities in Gondwana support the 

claim that inertinite macerals can indeed be used to indicate palaeo-wildfires (e.g., Scott and 

Glasspool, 2006; Scott, 2010; Hudspith et al., 2012). These events have obviously been 

common and widespread over Gondwana during the Permian. If inertinite macerals are 

accepted as having a pyrogenic origin, then the Gondwana Realm during the Permian was 

very likely highly prone to fires.  

Another argument against the burning hypothesis could be the climate and 

palaeolatitudes which dominated Gondwana during the Late Palaeozoic: high palaeolatitudes, 
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low temperatures and wet conditions could inhibit fire. However, authors like Bowman et al. 

(2009) and Flannigan et al. (2009) argued that the occurrence of fire is an important source of 

disturbance in a variety of terrestrial ecosystems, including areas of high latitudes with low 

temperatures and wet conditions. 

Finally, the anoxic conditions of the peat-forming environments which dominated the 

Late Palaeozoic Gondwana, could also be used to refute fire as a common element in these 

systems. Once again, studies carried out in modern peat forming environments, demonstrated 

that not only fire occurs, but also high inertinite levels are formed under these conditions 

(Pierce et al., 2004; Rein et al., 2008; Glasspool and Scott, 2010). Considering that the diverse 

origin (autochthonous, hypautochthonous, allochthonous) of the organic matter which 

composed the biomass accumulated in the mires of Gondwana, not just local palaeo-wildfire 

events can be considered, but also those which reached the surrounding areas.   

Almost all of the known evidence of Permian wildfires on Gondwana comes from 

broadly the same latitudes (Fig. 1), as most of this evidence is connected to the occurrence of 

(climatically controlled) peat deposition. Thus, one could assume that Permian palaeo-

wildfires on Gondwana were restricted to such peat-forming environments, whereas other 

habitats remained free from fires. However, there are some “exceptions”: the charcoal from 

the Late Permian of Jordan (Uhl et al., 2007), from the North Indian Margin (Schneebeli-

Hermann et al., 2012) and from Antarctica (Crosbie, 1985). This shows clearly that fires 

occurred also in non-peat forming vegetation during this period. Taking this into account, 

together with the overall numerical discrepancy between the number of published records of 

Permian (macro- and micro-) charcoal not associated with coal deposits and the published 

records of contemporaneous inertinite in coals on a global scale (e.g., Abu Hamad et al., 

2012), it seems realistic to assume, that many more records of Permian charcoals are waiting 

for discovery in sediments on Gondwana. Such new findings will probably help to improve 

the understanding of the history of wildfires during the Permian of Gondwana with its 
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complex interactions and feedbacks between fires and many environmental factors on more 

refined temporal and spatial scales as it is possible at the moment. 
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Figure Captions 

Fig. 1. Distribution of inertinite (orange circles) and macroscopic as well as microscopic 

charcoals (yellow stars) on Gondwana during the (A) Sakmarian, (B) Artinskian and (C) 

Lopingian (for details concerning localities see Table 1 and 2). Palaeogeographic 

reconstructions from Ziegler et al. (1997). 

 

Fig. 2. Overview of the number of published reports of fossil evidence for palaeo-wildfires 

during the Permian on Gondwana [See Tables 1–3 and text for details; intertinite data were 

taken from Abu Hamad et al. (2012) and additional sources not cited in this work (cf. Table 

2)] and modeled atmospheric oxygen concentration: A) Reported occurrences of macroscopic 

fossil charcoal; B) reported occurrences of inertinites/black carbon; C) reported occurrences 

of pyrogenic PAHs; D) reconstructed atmospheric oxygen concentrations [Permian 

highlighted in light grey (redrawn from Berner, 2009)]. 

 

Fig. 3. SEM images of macroscopic fossil charcoal samples from Vryheid Formation, Karoo 

basin, South Africa: A) charred wood with broken tissues; B) charred wood in radial view 

with tracheids broken into more or less small pieces; C) detail of charred wood with 

homogenized cell walls (arrow); D) charred wood in radial view with broken tracheids with 

uniseriate pitting; E) charred wood in radial view with tracheids presenting uniseriate pitting; 

F) detail of the uniseriate pitting on the tracheids; G) detail of the uniseriate pitting on the 

tracheids; H) charred wood in tangential view with uniseriate rays (arrow).  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 47 

 

Tab. 1: Overview of published records of Permian macro- and micro-charcoals from Gondwana. For 

details see text. 

locality/area country age 
type of 

evidence 
references 

Candiota coalfield BRA Sakmarian macro Jasper et al., 2011b 

Leão-Butiá coalfield BRA Sakmarian macro Jasper et al., 2011b 

Faxinal coalfield BRA Sakmarian macro 
Jasper et al., 2011a; Guerra-Sommer 

et al., 2008b. 

Morro do Papaléo outcrop BRA Sakmarian macro Jasper et al., 2011b 

Quitéria outcrop BRA Sakmarian macro 

Jasper et al. 2006, 2008; Cazzulo-

Klepzig et al. 1999;  Guerra-Sommer 

et al 2008a  

Santa Catarina coal basin BRA Artinskian macro Jasper et al., 2011b 

Figueira coalfield BRA Artinskian macro Jasper et al., 2011b 

Lower Whybrow coal AUS Wuchiapingian macro Glasspool, 2000 

Damodar Basin IND 
Wuchiapingian 

– Changhsingian 
macro Jasper et al., 2012 

South Island, Kuriwao Group  NZL 
Wuchiapingian 

– Changhsingian 
micro Crosbie, 1985; Campbell et al., 2001 

Perth Basin AUS Changhsingian micro Foster et al., 1997 

Tibet/North Indian Margin CHN Changhsingian micro Schneebeli-Hermann et al., 2012 

Wadi Himara JOR Changhsingian macro Uhl et al., 2007 
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Tab. 2: Overview of published records of Permian inertinites in coals from Gondwana. Data based on 

Diessel (2010), Glasspool & Scott (2010), and Abu Hamad et al. (2012). For details see text. 

    locality/area country age references 

Mersey, Tasm.  AUS Sakmarian Bacon, 1991  

Santa Terezinha  BRA Sakmarian Kalkreuth et al., 2006  

Leão–Butiá  BRA Sakmarian Kalkreuth et al., 2006  

Candiota  BRA Sakmarian 

Ade et al., 1998; Silva & 

Kalkreuth, 2005; Kalkreuth et 

al., 2006  

Auranga coalfield IND Sakmarian Jha & Jha, 1996 

Son Valley coalfield IND Sakmarian Basu, 1967  

West Bakaro coalfield IND Sakmarian Navale & Saxena, 1989 

Wankie coalfield ZWE Sakmarian Watson, 1958 

Figueira  BRA Sakmarian– Artinskian Ricardi-Branco et al., 1998 

Sakamena  MDG Sakmarian– Artinskian 
Alpern & Rakotoarivelo, 

1972  

Irwin River Coal  AUS Artinskian Santoso, 1994  

Ewington CM.Collie basin AUS Artinskian Santoso, 1994  

Sue C. M. Vasse shelf AUS Artinskian Santoso, 1994  

Ashford Coal M.  AUS Artinskian Flood, 1995  

Greta Coal M.  AUS Artinskian 
Edwards, 1975;  Diessel &  

Gammidge, 2003  

Barakar Formation  BGD Artinskian 
Bostick et al., 1991; Pareek & 

Bardhan, 1985  

Jamalganji Coalf.  BGD Artinskian Imam et al., 2002  

Damuda Form.  BTN Artinskian Mukherjee et al., 1988  

various fields  IND Artinskian Pareek, 1990  

Karhabari/Son V.  IND Artinskian Basu, 1967  

L. Gondwana  IND Artinskian Ghose & Wolf, 1974  

Goodavari Valley  IND Artinskian 
Pareek, 1986; Singh et al., 

2012 

Barakar F.   IND Artinskian Sing & Shukla, 2004  

Johilla Coalfield  IND Artinskian Singh & Singh, 1987  

Sohagpur  IND Artinskian Chakrabarti, 1987  

Waterberg Fm. ZAF Artinskian 
Fabiańska & Kruszewska, 

2003 

Vryheid Form.  ZAF Artinskian Glasspool, 2003a  

Witbank No.2 coal  ZAF Artinskian Glasspool, 2003b  

Main S. Gwembe  ZAM Artinskian Money & Drysdall, 1973 

Collinsville C.M.  AUS Artinskian - Kungurian 
Beeston & Davis, 1976; 

Mutton, 2003  

Maules Creek Fm. AUS Artinskian– Kungurian Gurba & Ward, 2000 
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Barakar Fm.  IND Artinskian - Kungurian 

Pareek, 1987 ; Jha & Jha, 

1996; Gurba & Ward, 2000; 

Chakrabarti, 1987; Singh & 

Shukla, 2004 

Singrauli coal  IND Artinskian– Kungurian 
Misra & Singh, 1990;  Mishra 

& Cook, 1992 

Jharkand IND Artinskian– Kungurian Pophare et al., 2008 

Jharia Coalfield IND Artinskian– Kungurian Mishra & Cook, 1992 

Moatize MOZ Artinskian– Kungurian Annon, 1983  

Mucanha–Vuzi MOZ Artinskian– Kungurian Falcon et al., 1984  

Boreholes MOZ Artinskian– Kungurian Falcon et al., 1984 

Songwe–Kiwira coalfield TZA Artinskian– Kungurian Semkiwa et al., 2003  

Namwele-Mkomolo coalfield TZA Artinskian– Kungurian Semkiwa et al., 1998 

Muze coalfield TZA Artinskian– Kungurian Semkiwa et al., 1998 

Galula coalfield TZA Artinskian– Kungurian Semkiwa et al., 1998 

Highveld coalfield ZAF Artinskian– Kungurian 

Hagelskamp & Snyman, 

1988; Wagner & Hlatshwayo, 

2005 

Karroo (Ecca age) ZAF Artinskian– Kungurian 
Fabiańska & Kruszewska, 

2003 

Queensland AUS Kungurian Follington et al., 1995 

Lower Aldebaran Sandstone AUS Kungurian Follington et al., 1995 

Jamalganji Coal F.  BGD Kungurian Imam et al., 2002  

Goodavari Valley  IND Kungurian Pareek, 1986  

L. Barakar Form.  IND Kungurian Pareek & Bardhan, 1985 

West Bokaro Basin  IND Kungurian Navale, Saxena, 1989  

Ruhuhu Form.  TZA Kungurian Mpanju et al., 1991  

Witbank  ZAF Kungurian Mangena et al., 2004  

Highveld coal  ZAF Kungurian 

Hagelskamp & Snyman, 

1988; Wagner & Hlatshwayo, 

2005 

Wankie Coalfield  ZWE Kungurian 
Duguid, 1978; Watson, 1958; 

Carr & Williamson, 1990  

Sabi, Lundi–Sabi  ZWE Kungurian Duguid, 1978  

Mengkarang  IND Kungurian - Roadian Suwarna, 2006  

German Cr./Moranbah AUS Wordian Mutton, 2003  

Foybrook Form.  AUS Capitanian Smyth, 1968  

Tomago C.M.  AUS Capitanian Edwards, 1975; Smyth, 1968 

Burnhamwood Fm. AUS Guadalupian Edwards, 1975 

Foybrook Fm. AUS Guadalupian Casareo  et al., 1996 

Coogal Subgroup AUS Guadalupian Edwards, 1975 

Tomago Coal measures AUS Guadalupian Edwards, 1975 

diff. Boreholes MOZ Guadalupian Falcon et al., 1984 

Illawara Coal Measures AUS 
Guadalupian - 

Changhsingian 

Edwards, 1975; Ward et al., 

1996; Diessel, 1965, 1985 

Lambton SG.  AUS Wuchiapingian Diessel, 1965; Edwards, 1975 

Wybrow Coal AUS Wuchiapingian 
Glasspool, 2000 ; Edwards, 

1975 

Adamstown SG.  AUS Wuchiapingian Edwards, 1975  
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Wongawilli S.  AUS Wuchiapingian Diessel, 1965  

Boolaroo SG.  AUS Wuchiapingian Edwards, 1975  

Melville S.  AUS Wuchiapingian Gurba & Ward, 1998  

Hoskisson S.  AUS Wuchiapingian 
Patterson et al., 1996; Tadros, 

1993; Gurba & Ward, 1998 

Moranbah Coal Measures AUS Wuchiapingian 
Retallack  et al., 1977, 

Follington et al., 1995 

Galilee Basin  AUS Wuchiapingian Mutton, 2003  

Rangal Coal Measures AUS Wuchiapingian Mutton, 2003  

Bainmedart Coal Measures / 

Lambert Graben, 
Antarctica 

Wuchiapingian – 

Changhsingian 
Holdgate et al., 2005 

Damodar Valley Basin IND 
Wuchiapingian – 

Changhsingian 

Mishra et al., 1990; Mishra, 

1996 

Newcastle Coal Measures AUS Changhsingian Edwards, 1975  

Torbanite/Joadja AUS Changhsingian Hutton & Cook, 1980 

Bulli Seam  AUS Changhsingian Diessel, 1965, 1985 

Rangal Coal Measures AUS Changhsingian 

Edwards, 1975; Gray & 

Bowling, 1995; Walker et al., 

2001  

Baralaba Coal Measures AUS Changhsingian 
Edwards, 1975; Follington et 

al., 1995 

Bhangtar  BTN Changhsingian Pareek, 1990  
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Tab. 3: Overview of published records of Permian pyrogenic PAHs on Gondwana. For details see 

text. 

        

locality/area country age references 

Perth Basin AUS Changhsingian Thomas et al., 2004, Grice et al., 2007 

Wadi Himara (Jordan) JOR Changhsingian Dill et al., 2010 
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Figure 1 
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Figure 2 
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Figure 3 
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Graphical Abstract 
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Highlights 

 An overview on the published evidence of Permian wildfires on Gondwana is 

presented; 

 A new occurrence from Permian macroscopic charcoal is presented for South Africa; 

 The data support palaeo-wildfires as common in Gondwana during the Permian. 


