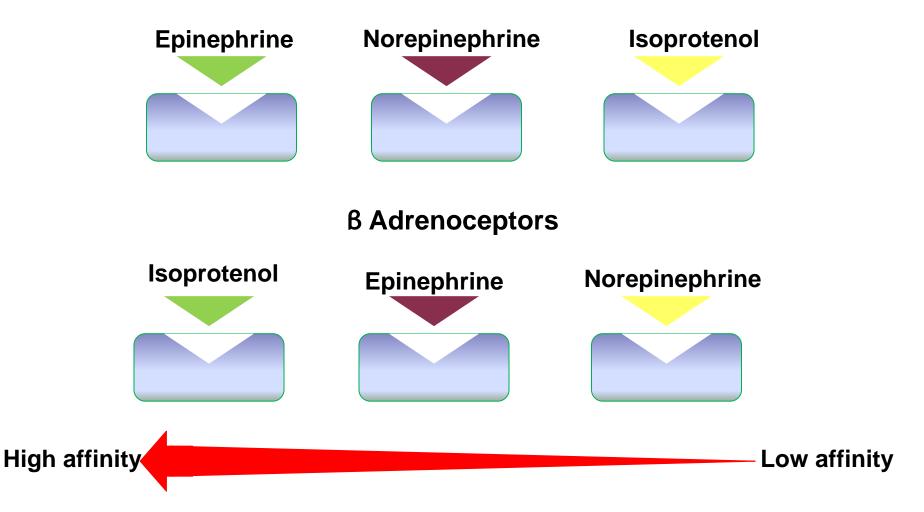

ADRENOCEPTOR AGONISTS & SYMPATHOMIMETIC DRUGS

OVERVIEW

- The sympathetic nervous system is an important regulator of virtually all organ systems
- The ultimate effects of sympathetic stimulation are mediated by
 - release of norepinephrine from nerve terminals,
 - which then activates adrenoceptors (pre- or postsynaptically)
- Also, in <u>response to a variety of stimuli</u> such as stress, the <u>adrenal medulla</u> releases <u>epinephrine</u>, which is transported in the blood to target tissues.....HORMONE
- CATECHOLAMINES.....RECEPTORS

11th Edition: http://www.accessmedicine.com


Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

ADRENERGIC RECEPTORS (ADRENOCEPTORS)

- There are two main groups of adrenergic receptors, α and β,
 - with several <u>subtypes</u>.
- These were initially <u>identified on the basis</u> of their <u>responses</u> to the adrenergic agonists:
 - epinephrine,
 - norepinephrine,
 - and isoproterenol

 All the adrenoceptors are G-protein coupled receptors (GPCRs).....G????

a Adrenoceptors

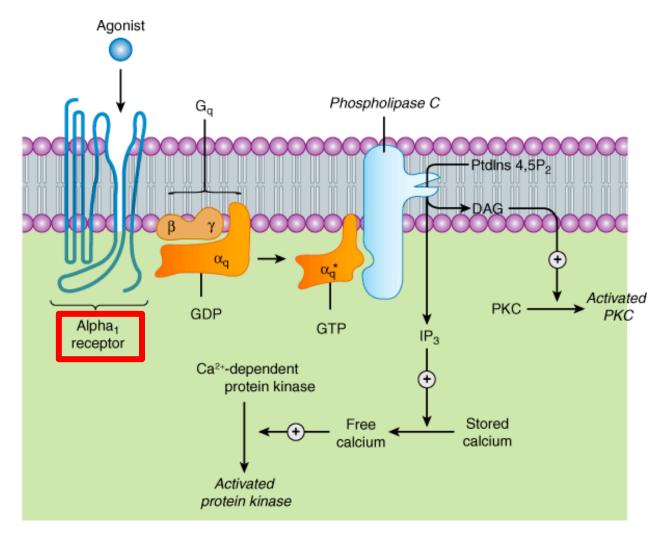
 The development of selective antagonists revealed the presence of subtypes of these receptors, which were finally characterized by molecular cloning. These proteins/receptors belong to a multigene family

<u>Necessary for understanding</u> the <u>selectivity of some drugs</u>. *Tamsulosin* (selective $\underline{\alpha}_{1A}$ antagonist), <u>benign prostate hyperplasia</u>, (urinary tract and prostate gland)

Table 9-1 Adrenoceptor Types and Subtypes

Receptor	Agonist	Antagonist	Effects
α ₁ type (α _{1A} , α _{1B} , α _{1D})	Phenylephrine	Prazosin	† IP3, DAG common to all
a_2 type (a_{2A} , a_{2B} , a_{2C})	Clonidine	Yohimbine	↓ cAMP common to all
B type (B ₁ , B ₂ , B ₃)	Isoproterenol	Propranolol	CAMP common to all
Dopamine type	Dopamine		
D1-like (D ₁ , D ₅)			1 camp
D2-like (D ₂ , D ₃ , D ₄)			CAMP

ADRENERGIC RECEPTORS (ADRENOCEPTORS) ALPHA RECEPTORS


- The α_1 receptors have a **higher affinity** for **phenylephrine** than do the α_2 receptors.
- Conversely, clonidine is more selective to α₂ receptors (has less effect on α₁ receptors)
- Both epinephrine and norepinephrine have similar affinity for α and β receptors

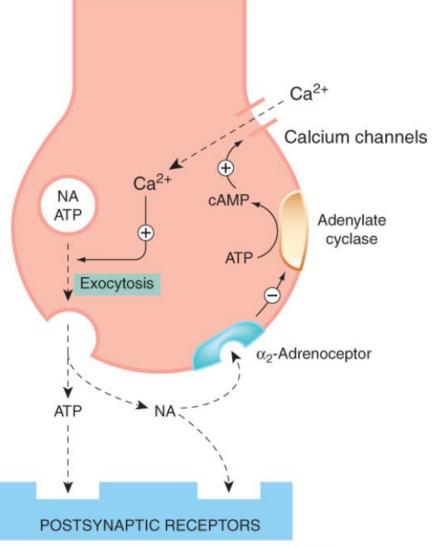
SELECTIVITY

- Selectivity?? A drug may preferentially bind to one subgroup of receptors at concentration too low to interact extensively with other subgroup! (e.g., important in β receptors)
- Selectivity not absolute...
 - higher concentration, the drug interacts with other subgroups!! >>>>>(drug are not specific!)
- The effect depends also on the
 - expression of the subtype on a given tissue
- The function of specific subtype receptor is known through development of <u>"knockout mice"</u>

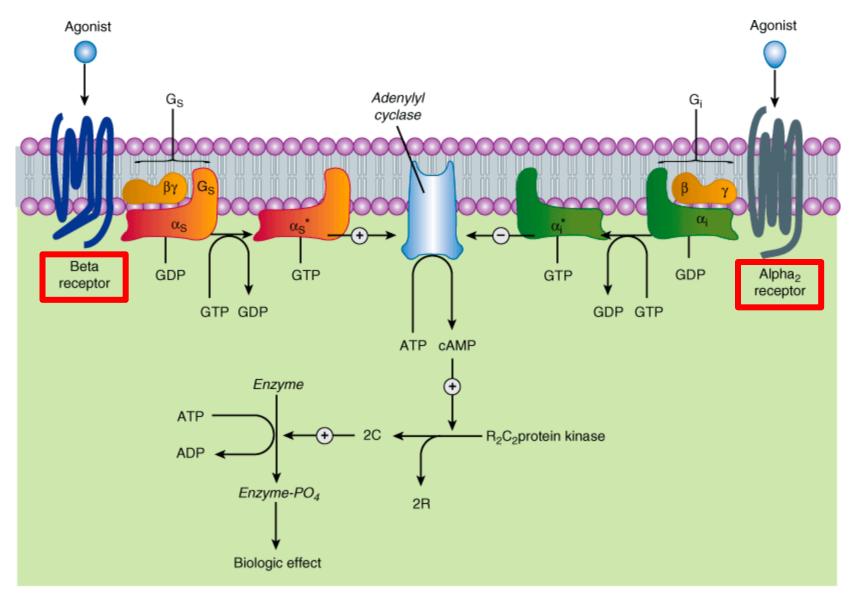
ADRENERGIC RECEPTORS (ADRENOCEPTORS) ALPHA RECEPTORS

- I. α_1 Adrenoceptors:
- These receptors are present on the postsynaptic membrane of the effector organs
 - and mediate many of the classic involving <u>contraction of smooth muscle</u>
- Alpha₁ receptors are coupled via G_q proteins to phospholipase C.
 - Activation of α₁ receptors result in the generation of inositol-1,4,5-trisphosphate (IP₃) and diacylglycerol (DAG) from phosphatidylinositol. IP₃ initiates the release of Ca²⁺ from the endoplasmic reticulum into the cytosol and the activation of various calcium-dependent protein kinases.
 - Activation of these receptors may <u>also increase influx</u> of <u>calcium</u> <u>a</u>cross the <u>cell's plasma membrane</u>.
- DAG activates protein kinase C, which modulates activity of many signaling pathways

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology*, *11th Edition*: http://www.accessmedicine.com


Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Alpha receptors


II. α_2 Adrenoceptors:

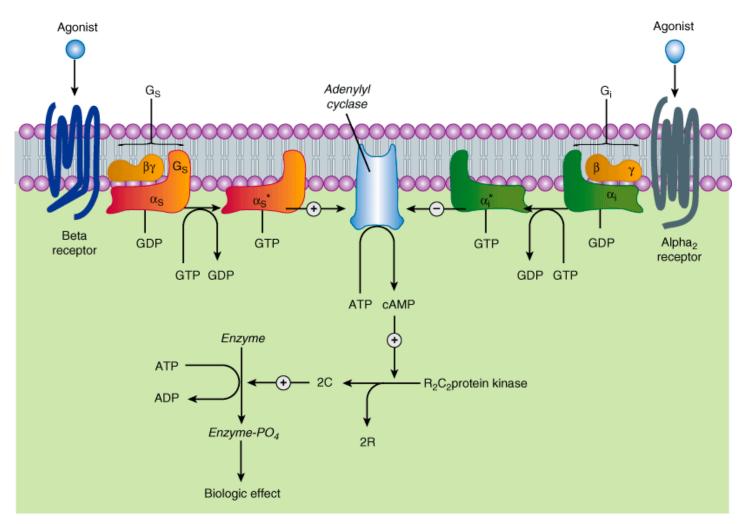
- These receptors, located primarily on presynaptic nerve endings and on other cells, such as the <u>β cell</u> of the pancreas, and on <u>certain vascular smooth</u> <u>muscle cells</u>, control
- adrenergic neuromediator
 - and insulin output, respectively
- Alpha₂ receptors are coupled via G_i protein to adenylyl cyclase.
 - Alpha₂ receptors inhibit adenylyl cyclase activity and
 - cause intracellular cyclic adenosine monophosphate (cAMP) levels to <u>decrease</u>

Feedback control of noradrenaline release

© Elsevier. Rang et al: Pharmacology 6e - www.studentconsult.com

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

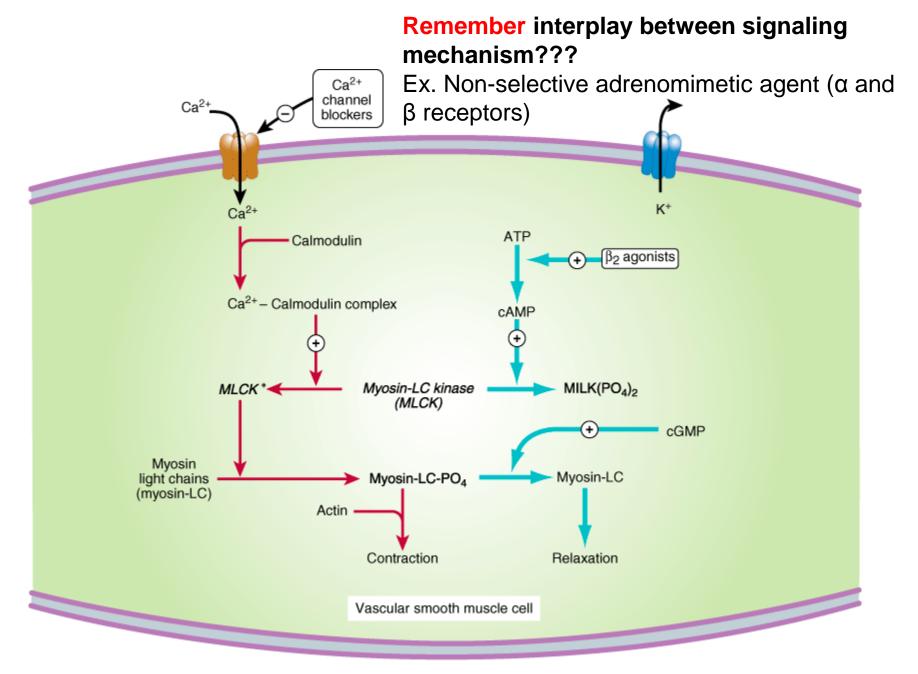

BETA RECEPTORS

- β₁ Receptors have approximately equal affinities for epinephrine and norepinephrine,
- whereas β₂ receptors have a higher affinity for epinephrine than for norepinephrine.
 - Thus, tissues with a predominance of β₂ receptors (such as the vasculature of skeletal muscle) are particularly responsive to the hormonal effects of circulating epinephrine released by the adrenal medulla
- β₃ Receptors may mediate responses to catecholamine at sites with "atypical" pharmacological characteristics (*e.g.*, adipose tissue)

BETA RECEPTORS

All the β -adrenoceptors (β_1 , β_2 , β_3) are coupled via G proteins to **the G_s family** to **adenylyl cyclase**

....stimulation of adenylyl cyclase and increased cAMP!


Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology,

BETA RECEPTORS

cAMP is the major second messenger of 6-receptor activation!

For example:

- In the heart,
 - increases the influx of calcium across the cell membrane and its sequestration inside the cell
- cAMP also promotes the <u>relaxation</u> <u>of smooth</u> <u>muscle</u>
 - (uncertain mechanism....may involve the phosphorylation of myosin light-chain kinase to an inactive form) (see Figure 12–1)
- In the liver, β-receptor-activated cAMP synthesis leads to activation of glycogen phosphorylase

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Dopaminergic receptors

- The endogenous catecholamine "dopamine" is imp. In
 - brain and
 - in the splanchnic and renal vasculature
 - (5 receptor subtypes)
- The <u>D₁-like</u> receptor is typically associated with the
 - stimulation of adenylyl cyclase (for example, D₁-receptorinduced smooth muscle relaxation is presumably due to cAMP accumulation in the smooth muscle of those vascular beds in which dopamine is a vasodilator)

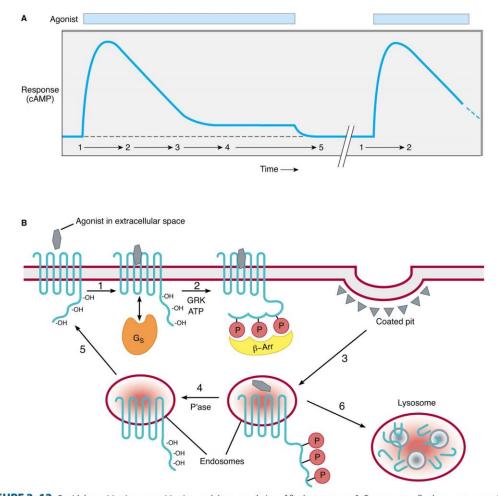
• **D**₂-like receptors have been found to:

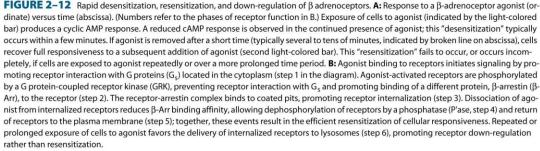
- inhibit adenylyl cyclase activity,
- open potassium channels,
- and decrease calcium influx

ADRENERGIC RECEPTORS (ADRENOCEPTORS) RECEPTOR REGULATION

- Responses mediated by adrenoceptors are not fixed and static
- Prolonged exposure to the catecholamines
 - reduces the tissue response to further stimulation by that agent
- This process has potential clinical significance because it may limit the therapeutic response to sympathomimetic agents

ADRENERGIC RECEPTORS (ADRENOCEPTORS) RECEPTOR REGULATION

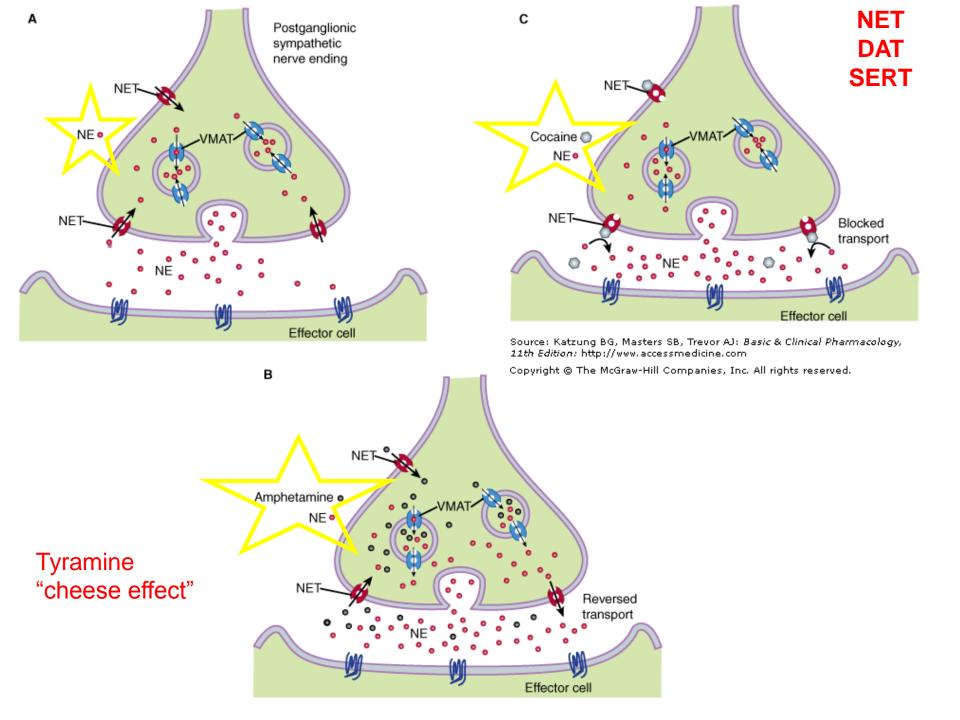

 Two major categories of desensitization of responses mediated by G protein-coupled receptors:


Homologous desensitization:

 refers to loss of responsiveness exclusively of the receptors that have been exposed to repeated or sustained activation by an agonist:

Inability to couple to G protein,

because the receptor has been <u>phosphorylated</u> on the cytoplasmic side by <u>G protein-coupled receptor kinase</u> (GRK) family


ADRENERGIC RECEPTORS (ADRENOCEPTORS) RECEPTOR REGULATION

Heterologous desensitization:

- refers to the process by which desensitization of one receptor by its agonists
 - also results in desensitization of another receptor that has not been directly activated by the agonist in question
- This can be mediated by second-messenger feedback mechanism:
 - For example, β₁-adrenoceptors stimulate cAMP accumulation, which leads to activation of protein kinase A;
 - which can phosphorylate <u>serine residues</u> of <u>intracellular tail of β₂</u> receptors, resulting in <u>inhibition of this receptor function</u>

Sympathomimetic drugs

- Sympathomimetic drugs are classified as:
 - I. Direct acting sympathomimetics: act directly on one or more of the adrenergic receptors
 - II. Indirect acting sympathomimetics: increase the availability of norepinephrine or epinephrine to stimulate adrenergic receptors
 - Displacement of stored catecholamines from the adrenergic nerve ending (e.g. tyramine & amphetamine) (amphetamine-like or 'displacers')
 - Inhibition of reuptake of catecholamines already released (e.g. cocaine & tricyclic antidepressants)
 - 3) Blocking the metabolizing enzymes, monoamine oxidase (MAO) (*e.g.*, *pargyline*) or catechol-*O*-methyltransferase (COMT) (*e.g.*, *entacapone*)

SYMPATHOMIMETIC DRUGS (CONT'D)

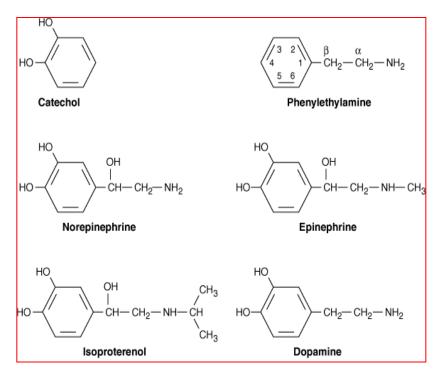
Mixed acting sympathomimetics:

- <u>indirectly</u> induce the <u>release</u> of norepinephrine from the presynaptic terminal
- and directly activate receptors
- (e.g. Ephedrine)

SYMPATHOMIMETIC DRUGS (CONT'D)

N.B:

The pharmacologic effects of direct agonists depend on:


- the <u>route of administration</u>,
- their <u>relative affinity</u> for adrenoreceptor subtypes,
- and the <u>relative expression</u> of these receptor subtypes in target tissues

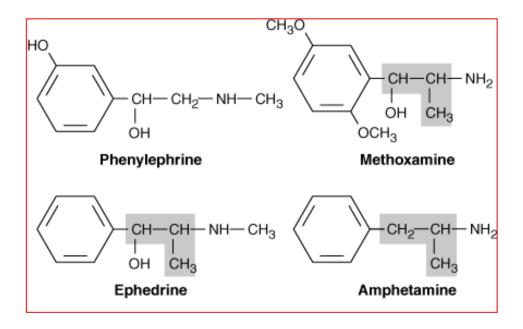
The pharmacologic effects of indirect sympathomimetics are <u>greater</u> under conditions of:

- increased sympathetic activity
- and norepinephrine storage and release

SYMPATHOMIMETIC DRUGS (CONT'D)

- <u>Phenylethylamine</u> may be considered the:
 - parent compound from which sympathomimetic drugs are derived
 - This compound consists of a <u>benzene ring</u> with an <u>ethylamine</u> <u>side chain</u>
- <u>Substitutions</u> may be made on (1) the <u>benzene ring</u>, (2) the <u>terminal amino group</u>, and/or (3) the <u>carbons of the amino chain</u>
- These modifications produce a great variety of compounds with:
 - varying <u>affinities to α and β</u> receptors,
 - as well as to influence the intrinsic ability to activate the receptors,
 - their <u>pharmacokinetic properties</u>,
 - and different abilities to penetrate the CNS

Maximal α - and β - activity is found with catecholamines


Catecholamines are subject to inactivation by COMT (found in the **gut and liver**)

So...catecholamines are not active orally

Furthermore, <u>absence</u> of <u>ring</u>—OH groups <u>increase distribution</u> of the molecule to the <u>central nervous system</u>

(ephedrine and amphetamine are :

- <u>orally active</u>,
- have a prolonged duration of action,
- and produce <u>central nervous system</u> <u>effects</u>)

Substitutions at the <u>α-carbon</u> <u>block</u> <u>oxidation by monoamine</u> <u>oxidase (MAO)</u> and <u>prolong the action of such drugs</u> (phenylisopropylamines) (alpha methyl compounds)

<u>a-substitution give indirect activity (displacement)</u>

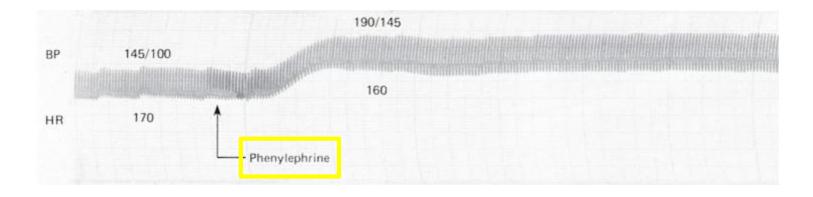
ORGAN SYSTEM EFFECTS OF SYMPATHOMIMETIC DRUGS

- The response of any cell or organ to sympathomimetics depends on:
 - the <u>density</u> and <u>proportion</u> of <u>α and β adrenergic</u> receptors;
 - their <u>relative selectivity</u> for the <u>different adrenoceptor</u> subtype,
 - and its **pharmacological action** on **those receptors**
 - Don't forget compensatory <u>baroreflex mechanisms</u> (CV system)
- Adrenergically innervated organs and tissues tend to have a predominance of one type of receptor.....tissues such as the <u>vasculature of skeletal</u> muscle have predominantly β₂ receptors
-the heart contains mainly β_1 receptors

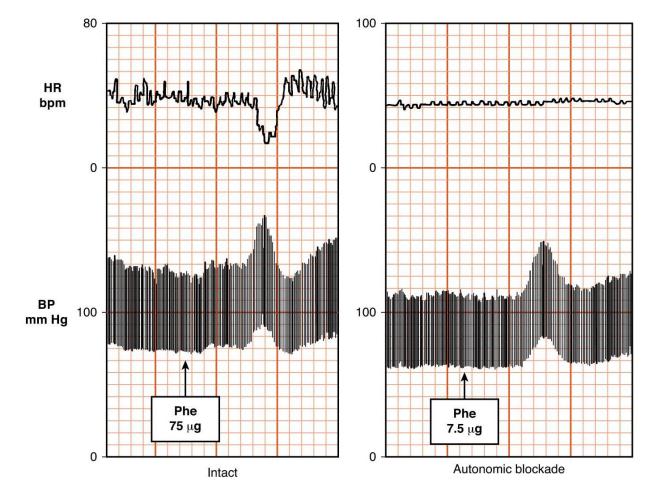
TABLE 9–3 Distribution of adrenoceptor subtypes.

Туре	Tissue	Actions
α ₁	Most vascular smooth mus- cle (innervated)	Contraction
	Pupillary dilator muscle	Contraction (dilates pupil)
	Pilomotor smooth muscle	Erects hair
	Prostate	Contraction
	Heart	Increases force of contraction
α2	Postsynaptic CNS adreno- ceptors	Probably multiple
	Platelets	Aggregation
	Adrenergic and cholinergic nerve terminals	Inhibition of transmitter re- lease
	Some vascular smooth muscle	Contraction
	Fat cells	Inhibition of lipolysis
β ₁	Heart, juxtaglomerular cells	Increases force and rate of contraction; increases renin release
β ₂	Respiratory, uterine, and vas- cular smooth muscle	Promotes smooth muscle re- laxation
	Skeletal muscle	Promotes potassium uptake
	Human liver	Activates glycogenolysis
β_3	Fat cells	Activates lipolysis
D ₁	Smooth muscle	Dilates renal blood vessels
D ₂	Nerve endings	Modulates transmitter release

TABLE 9–2 Relative receptor affinities.


	Relative Receptor Affinities		
Alpha agonists			
Phenylephrine, methoxamine	$\alpha_1 > \alpha_2 >>>> \beta$		
Clonidine, methylnorepinephrine	$\alpha_2 > \alpha_1 >>>> \beta$		
Mixed alpha and beta agonists			
Norepinephrine	$\alpha_1 = \alpha_2; \beta_1 >> \beta_2$		
Epinephrine	$\alpha_1 = \alpha_2; \beta_1 = \beta_2$		
Beta agonists			
Dobutamine ¹	$\beta_1 > \beta_2 >>> \alpha$		
Isoproterenol	$\beta_1 = \beta_2 >>> \alpha$		
Albuterol, terbutaline, metaproterenol, ritodrine	$\beta_2 >> \beta_1 >>> \alpha$		
Dopamine agonists			
Dopamine	$D_1 = D_2 >> \beta >> \alpha$		
Fenoldopam	D ₁ >> D ₂		

¹See text.

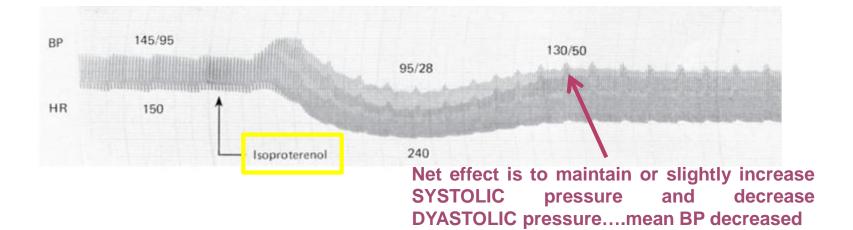

CARDIOVASCULAR SYSTEM

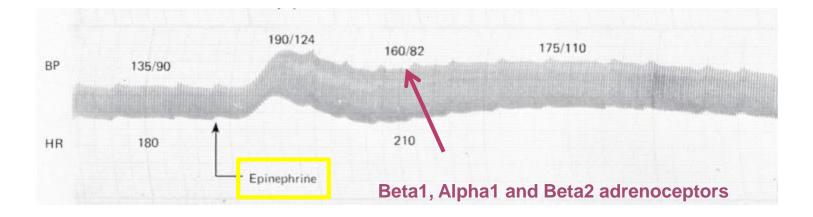
• Alpha₁-Receptor Activation

- <u>Alpha₁</u> receptors <u>expressed</u> in <u>most vascular beds</u>, and
 - their activation causes vasoconstriction
 - and rise in peripheral resistance.....dose-dependent rise in blood pressure
- In the presence of normal cardiovascular reflexes, the
 - rise in blood pressure elicits a <u>baroreceptor-mediated increase</u> in vagal tone with <u>slowing of the heart rate (bradycardia)</u> (fig. 9-7)
- Trimethaphan: ganglion blocker....bradycardia is no longer observed

- Phenylephrine given as I.V bolus to a dog
- Reflex are blunted (but not eliminated) in anesthetized animal

- Note that the <u>increase in BP</u> is associated with a <u>baroreflex-</u> <u>mediated</u> compensatory <u>decrease in HR</u>
- <u>Patients</u> with <u>impaired autonomic function</u> (<u>diabetic</u> <u>autonomic neuropathy</u>) may have <u>exaggerated increases</u> in <u>heart rate</u> or <u>blood pressure</u> when taking <u>sympathomimetics</u>


CARDIOVASCULAR SYSTEM


- Alpha₂-Receptor Activation
 - α_2 adrenoceptors are present in the vasculature,
 - and their **activation** leads to **vasoconstriction**
 - This effect, is observed only when α₂ agonists are given locally, by rapid I.V injection or in very high oral doses
 - When given <u>systemically</u>, these <u>vascular effects</u> are <u>obscured</u> by the <u>central effects</u> of <u>α₂ receptors</u>,
 - which lead to <u>inhibition of sympathetic tone</u> and <u>blood pressure</u> (sympatholytic effect)
 - Clonidine: used to treatment (Tx.) Hypertension
 - Patients with **pure autonomic failure**??

CARDIOVASCULAR SYSTEM

• Beta-Receptor Activation

- Isoproterenol activates both <u>beta1 and beta</u>2 adrenoceptor???
- Direct effects on the heart are determined largely by β₁ receptors.
 - **Positive** *chronotropic effect, inotropic effect* and *dromotropic effect....increase coronary blood flow*
 -resulting in a markedly <u>increased</u> <u>cardiac output</u> and cardiac <u>oxygen consumption</u>
- β₂ receptors activation, leads to vasodilation in certain vasculature of smooth muscles
 - Increase blood flow in skeletal muscle during exercise

CARDIOVASCULAR SYSTEM

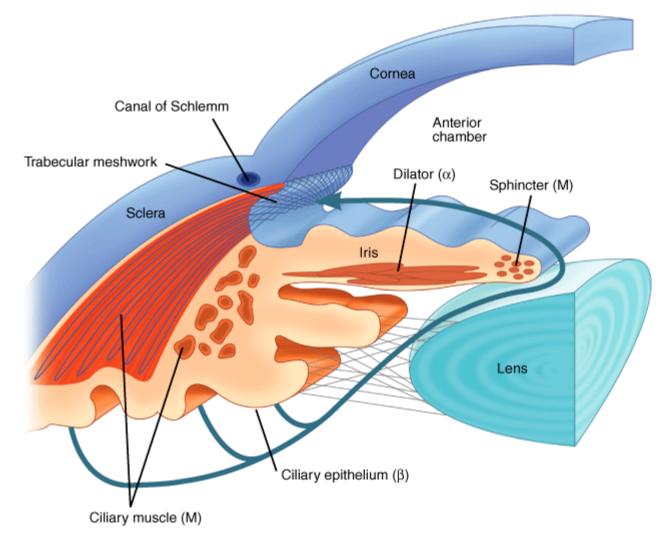
- Dopamine receptors??
- D1: <u>vasodilation</u> of <u>renal</u>, <u>splanchnic</u>, <u>coronary</u>, <u>cerebral</u> and other resistance vessels
- **D2**: <u>presynaptic</u> receptor (unclear role)
- Opamine activates beta1 receptors on the heart and.....
- (at higher doses) **alpha r**eceptors on the **vessels**....
-at <u>high doses</u> vasoconstriction (similar to epinephrine)

	Phenylephrine	Epinephrine	Isoproterenol
Vascular resistance (tone)			
Cutaneous, mucous membranes (a)	$\uparrow\uparrow$	↑ ↑	0
Skeletal muscle (β ₂ , α)	↑	↓ or ↑	↓↓
Renal (α, D1)	↑	↑ (Ļ
Splanchnic (α, β)	^	↓ or ↑¹	Ļ
Total peripheral resistance	$\uparrow\uparrow\uparrow$	↓ or ↑¹	↓↓
Venous tone (a, b)	↑	↑ (Ļ
Cardiac			
Contractility (β ₁)	0 or 1	<u>^</u>	↑ ↑↑
Heart rate (predominantly β_1)	$\downarrow\downarrow$ (vagal reflex)	1 or ↓	↑ ↑↑
Stroke volume	0, ↓, ↑	↑ (↑
Cardiac output	\downarrow	↑ (↑ ↑
Blood pressure			
Mean	$\uparrow\uparrow$	↑	Ļ
Diastolic	$\uparrow\uparrow$	↓ or ↑¹	↓↓
Systolic	↑ ↑	↑ ↑	0 or ↓
Pulse pressure	0	↑ ↑	↑ ↑

TABLE 9-4 Cardiovascular responses to sympathomimetic amines.

¹Small doses decrease, large doses increase.

 \uparrow = increase; \downarrow = decrease; 0 = no change.


THE EYE...../ ...RESPIRATORY SYSTEM

• The Eye

- Activation of α_1 receptors mediates contraction of the radial pupillary dilator muscle of the iris and results in mydriasis
- Reduces intraocular pressure due to (alpha)
 - vasoconstriction and increase the outflow of aqueous humor from the eye
- β receptors antagonists reduce the production of aqueous humor (ciliary epithelium)

Respiratory system

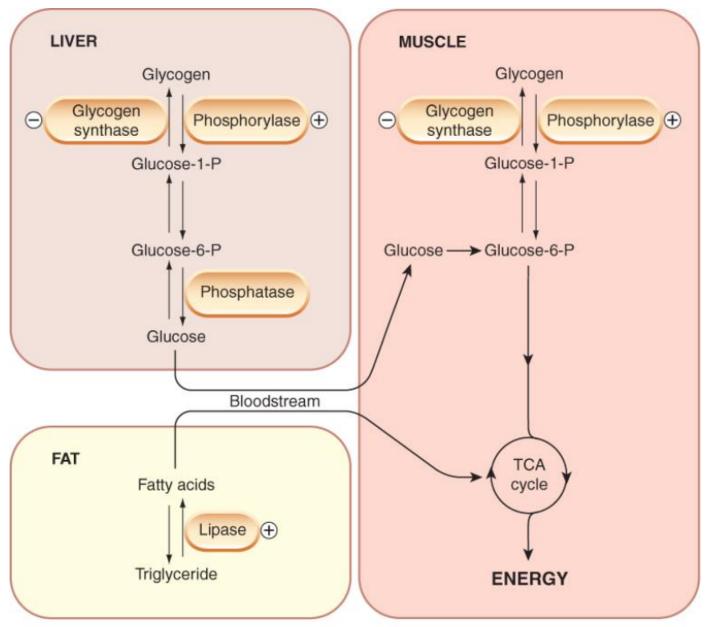
- Activation of β_2 receptors in bronchial smooth muscle leads to:
 - **bronchodilation** and
 - also inhibits the release of allergy mediator such as histamines from mast cells
 - (albuterol, salmeterol used for treatment (Tx.) of asthma)

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology,* 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

GENITOURINARY TRACT

- The bladder base, urethral sphincter, and prostate contain α receptors that mediate <u>contraction</u>.....<u>urinary continence</u>
- The <u>specific α_{1A} </u> receptor subtype seems to be involved in <u>mediating constriction</u> of the <u>bladder base</u> and <u>prostate</u> (urinary <u>retention</u> is a <u>potential ADE of the α_1 agonist midodrine</u>)
- Alpha-receptor activation in the ductus deferens, seminal vesicles, and prostate plays a role in normal ejaculation.
- Uterus: Similar effect on uterine smooth muscle (ritodrine) for the <u>Tx of prematur labor</u>


EXOCRINE GLANDS

 Salivary glands: contain adrenoceptors that <u>regulate</u> the secretion of amylase and water

- However, certain sympathomimetic drugs (clonidine) produce symptoms of dry mouth.....<u>mechanism uncertain</u>; (probably CNS effects are responsible, though peripheral effects may contribute)
- Apocrine sweat glands: contain adrenoceptors and their stimulation increase sweat production (nonthermoregulatory glands associated with psychological stress) (sympathetic adrenergic)

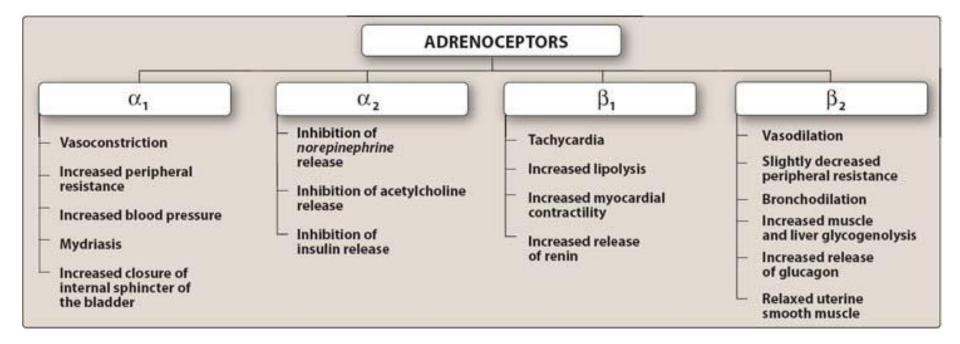
METABOLISM

- <u>Catecholamines</u> encourage the <u>conversion of energy</u> stores (<u>glycogen and fat</u>) to <u>freely available fuels</u> (<u>glucose and free fatty acid</u>s), and cause an increase in the plasma concentration of these substances
- 1. Activation of β_3 receptors in adipocytes stimulate **lipolysis.....**enhance <u>release</u> of <u>FFA and glycerol</u> into the blood
- 2. α_2 receptors activation **inhibit lipolysis** by decreasing intracellular cAMP
- 3. Stimulate glycogenolysis in the <u>liver and muscles</u>, which leads to increased glucose release into the circulation.....mediated mainly by β receptors

© Elsevier. Rang et al: Pharmacology 6e - www.studentconsult.com

METABOLISM

- Activation of <u>B₂</u> receptors promotes K⁺ uptake into cells, particularly skeletal muscles.....
- <u>Stress result in</u>
 -Fall in plasma K⁺ potassium concentration (<u>hypokalemia</u>) <u>during stress</u>
- and <u>protect</u> against <u>a rise in plasma potassium during</u> <u>exercise</u>


HORMONES SECRETION

- <u>β</u> receptors enhance insulin secretion and renin secretion....
-while.....
- α_2 receptors inhibit insulin secretion and renin secretion
- Adrenoceptors also modulate the secretion of
 - parathyroid hormone,
 - calcitonin,
 - thyroxine,
 - and gastrin......limited physiologic significance

CENTRAL NERVOUS SYSTEM

- The catecholamines are almost completely unable to enter the CNS
 - At highest rates of infusion effects are noted as nervousness
 - **Tremor** and **tachycardia** are **peripheral effect** and are similar to the somatic manifestations of anxiety
- <u>Noncatecholamines</u> with <u>indirect actions</u> (amphetamines), readily enter the CNS....
 -their actions vary from mild alerting, with improved attention to boring tasks;
 - through elevation of mood,
 - insomnia,
 - euphoria,
 - e and anorexia;
 - to full-blown psychotic behavior

Major effects mediated by α and β adrenoceptors

THERAPEUTIC USES OF SYMPATHOMIMETIC DRUGS

- Selection of a particular sympathomimetic drug depends on:
 - 1. <u>Whether</u> <u>activation</u> of $\underline{\alpha}$, $\underline{\beta}_1$, or $\underline{\beta}_2$ receptors is <u>desired</u>
 - 2. The <u>desirable</u> duration of action
 - 3. The preferred route of administration

DIRECT ACTING ADRENERGIC AGONISTS ENDOGENOUS CATECHOLAMINE

- a. Epinephrine (adrenaline)
- Potent stimulant of both α and β adrenoceptors
- Output: CV effect: potent vasoconstrictor and cardiac stimulant
 - +ve inotropic and chronotropic actions on the heart (B1)
 - and vasoconstriction induced in many vascular beds (a1)
 - Epinephrine also activates β₂ receptors in some vessels (eg, skeletal muscle blood vessels), leading to <u>their</u> dilation
 - Therefore, the **net effect** is :
 - an increase in systolic blood pressure,
 - coupled with a <u>slight decrease</u> in **diastolic pressure**

a. Epinephrine (adrenaline)

• Respiratory:

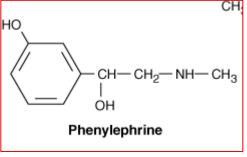
- causes powerful bronchodilation by acting directly on bronchial smooth muscle and
- inhibiting the release of allergic mediators such as histamine from mast cells (β₂ action)
- Hyperglycemia: epinephrine has a significant hyperglycemic effect because of
 - increased glycogenolysis in the liver (β_2 effect),
 - and a decreased release of insulin (α_2 effect)
- Lipolysis: epinephrine initiates lipolysis through its agonist activity on the β receptors of adipose tissue

THERAPEUTIC USES OF SYMPATHOMIMETIC DRUGS ANAPHYLAXIS

- Epinephrine (IM) is the 1ry Tx for anaphylaxis (drug of choice "DOC")
- ??Epinephrine activates α , β_1 , and β_2 receptors
- Can relief anaphylactic shock:
 - bronchospasm,
 - mucous membrane congestion,
 - angioedema,
 - and severe hypotension
- <u>Glucocorticoids and antihistamines</u> useful as <u>2ry therapy</u>
- "EpiPen" recommended for patients at risk for:
 - insect sting hypersensitivity,
 - severe food allergies,
 - or other types of anaphylaxis

DIRECT ACTING ADRENERGIC AGONISTS ENDOGENOUS CATECHOLAMINE

- **b.** Norepinephrine (noradrenaline, levarterenol)
- At therapeutic doses to human, stimulate the α-adrenergic receptors (both α₁ & α₂) and the β₁ receptors with similar potency as epinephrine, but has relatively little effect on β₂ receptors
- Norepinephrine:
 - increases peripheral resistance
 - and both **diastolic and systolic blood pressure**
 - Compensatory baroreflex activation tends to overcome the direct positive chronotropic effects of norepinephrine; however, the positive inotropic effects on the heart are maintained


DIRECT ACTING ADRENERGIC AGONISTS ENDOGENOUS CATECHOLAMINE

c. Dopamine

- Important neurotransmitter in the CNS and is involved in the reward stimulus relevant to addiction
- Its deficiency in the basal ganglia leads to Parkinson's disease (treated with levodopa)
- Its increment seems to be the cause of psychosis (Tx dopamine antagonist)
- Dopamine promotes vasodilation via activation of D₁
 receptors.
- The activation of presynaptic D₂ receptors suppresses norepinephrine release

d. Phenylphrine

- **Direct-acting and synthetic** α_1 receptors **agonist**
- Not a catechol derivative and, therefore, <u>not</u> a <u>substrate</u> <u>for COMT (longer duration of action)</u>
- It is a vasoconstrictor that <u>raises</u> <u>both</u> <u>systolic</u> and <u>diastolic</u> blood pressures
- Has <u>no effect</u> on <u>the heart</u> itself but rather <u>induces reflex</u>
 <u>bradycardia</u> when given <u>parenterally</u>

THERAPEUTIC USES OF SYMPATHOMIMETIC DRUGS

- **Phenylephrine** is an effective :
 - mydriatic agent frequently used to facilitate examination of the retina
 - Topically on the nasal mucous membrane as a decongestant for minor allergic hyperemia and itching of the conjunctival membranes
- **N.B: Nasal blood vessels are rich in α receptors.....**vasoconstriction

Tetrahydrozoline used also to induce mydriasis

.....both drugs do not cause cycloplegia

Xylometazoline and oxymetazoline

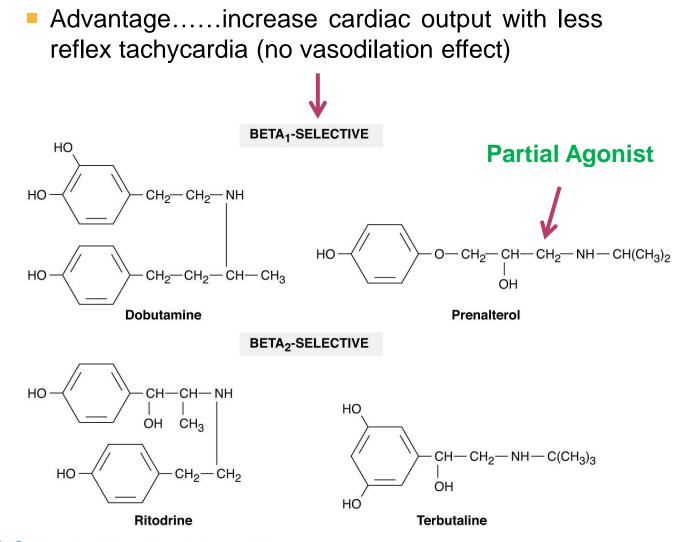
- Both are **direct-acting** α -adrenoceptor agonists
- These drugs have been used as <u>topical decongestants</u> because of their ability to <u>promote constriction of the</u> <u>nasal mu</u>cosa (available as <u>over-the-counter</u> <u>nasal spray</u> <u>products</u>)
- When taken <u>in large doses</u>, oxymetazoline may cause <u>hypotension (α_{2A} receptors</u>)

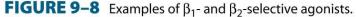
Midodrine

- It is a prodrug that is enzymatically hydrolyzed to DesGlyMidodrine......<u>selective α₁-receptor agonist</u>
- USE: primarily indicated for the treatment of orthostatic hypotension,
 - typically due to **impaired autonomic nervous** system function
- <u>Effective</u> when the <u>patient is standing</u>, but may <u>cause</u>
 <u>HTN</u> when the subject is <u>supine</u>.....can be minimized by
 - avoiding dosing prior to bedtime
 - and <u>elevating the head of the bed</u>

- c. Methoxamine
- α_1 receptors agonist
- It may cause a <u>prolonged</u> increase in <u>blood</u> pressure due to vasoconstriction;
- it also causes a <u>vagally mediated bradycardia</u>

 USE: <u>clinical applications</u> are <u>rare</u>....overcome <u>hypotensive states</u> during <u>surgery</u> involving <u>halothane anesthetics</u> (parenterally)


d. Alpha₂-selective agonists


"Clonidine, Methyldopa, <u>Guan</u>facine, <u>Guan</u>abenz"

- <u>Primarily</u> used for the treatment of <u>systemic</u>
 <u>hypertension</u>
 - due to their ability to decrease blood pressure through actions in the central nervous system
- Apraclonidine and brimonidine (α_2 -selective agonists)
 - lower intraocular pressure and are approved for use in glaucoma (used more than non-selective alpha agonist).
- **Tizanidine** (α_2 agonist) that is used as a muscle relaxant

f. Isoproterenol (isoprenaline)

- Direct acting synthetic <u>catecholamine</u> that predominantly <u>stimulates β adrenoceptors</u>. <u>Little effect</u> on <u>α-receptors</u>
- Produces intense stimulation of the heart to increase its rate and force of contraction.....increases cardiac output (β_1 effect)
- Dilates the arterioles of skeletal muscle (β₂ effect), resulting in decreased peripheral resistance
- Net effect: marked fall in diastolic and a lesser decrease or a slight increase in systolic pressure
- <u>Rarely used therapeutically</u>.....used to <u>stimulate</u> the <u>heart in</u> <u>emergency</u> situations.....

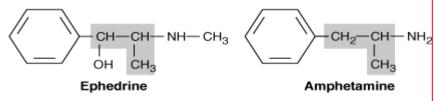
- g. Beta-selective agonists
- β₁-selective agents: *dobutamine* & prenalterol (partial agonist)
- <u>Clinical preparations</u> of <u>dobutamine</u> are a <u>racemic mixture of</u> (-) and (+) isomers,
 - (+) isomer......potent β_1 agonist and α_1 antagonist
 - (-) isomer.....potent <u>α₁ agonist</u> (cause significant vasoconstriction when given alone)
 - The resultant CV effects of dobutamine reflect this complex pharmacology:
 - Increases cardiac output (positive inotropic action)
 - with <u>little change in HR</u>,
 - and peripheral resistance does not decrease significantly
 - <u>Does not</u> significantly elevate O2 demands of the <u>myocardium</u> — advantage over other sympathomimetic drugs

- g. Beta-selective agonists
- β_2 -selective agents:
 - These agents are used primarily as bronchodilator and their use have achieved an important place in the treatment of asthma (reliever)
 - Short-acting (inhalers):
 - "albuterol (salbutamol), metaproterenol, terbutaline".
 - ...effective for <u>Tx</u> of <u>acute symptoms.</u>
 - Long-acting(inhalers):
 - "salmeterol, formeterol"..... combined with <u>corticosteroid</u> used <u>as prophylaxis</u>
- Nonselective drugs (epinephrine), β-selective agents (isoproterenol), are available

THERAPEUTIC USES OF SYMPATHOMIMETIC DRUGS GENITOURINARY APPLICATIONS

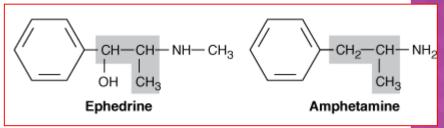
• Beta-selective agonists

- *Ritodrine (B2-selective)* used clinically to achieve uterine relaxation in premature labor (arrest premature labor)
- "Terbutaline" have been used to suppress premature labor


The goal is to <u>defer labor</u> long enough to ensure adequate <u>maturation of the fetus</u>.

This may <u>afford time</u> to <u>administer corticosteroid drugs</u>, which decrease the incidence of neonatal respiratory distress syndrome (IRDS)

MIXED-ACTING SYMPATHOMIMETICS


• EPHEDRINE

- 1st orally active sympathomimetic (non-chatecol)
- Relatively <u>long duration</u> of action
- Can enter the CNS with mild stimulant effect
- PSEUDOEPHEDRINE
 - One of the four <u>ephedrine enantiomers</u>
 - Was available as <u>OTC component</u> of many <u>decongestant</u>
 <u>mixtures</u>
 - Used as a <u>precursor</u> in the <u>illicit manufacture</u> of <u>methamphetamine</u> (restrictions on its sale)
- GENITOURINARY APPLICATION: "Ephedrine or pseudoephedrine" is occasionally useful in the treatment of stress incontinence

INDIRECT ACTING ADRENERGIC AGONISTS A. AMPHETAMINE-LIKE OR DISPLACERS

- **1.** Amphetamine:
- It is a racemic mixture of phenylisopropylamine (<u>D-isomer</u> is <u>more potent</u> than <u>L-isomer</u>)
- Amphetamine's actions are mediated through the release of norepinephrine and, to some extent, dopamine
- Amphetamine and other p<u>henylisoproylamines</u> are widely abused as <u>CNS stimulants (orally active</u>)
- Legitimate indications include:
 - narcolepsy,
 - attention deficit disorder
 - and weight reduction

INDIRECT ACTING ADRENERGIC AGONISTS A. AMPHETAMINE-LIKE OR DISPLACERS

- 2. Methamphetamine:
- Very similar to amphetamine with an even higher ratio of central to peripheral actions.
- In **the brain**, methamphetamine:
 - releases dopamine and other <u>biogenic amines</u>,
 - and inhibits MAO
- **3. Phenmetrazine:**
- It is a variant phenylisopropylamine with <u>amphetamine-</u> <u>like effects</u>.
 - It has been promoted as an **anorexiant**
 - and is also <u>a popular drug of abuse</u>

THERAPEUTIC USES OF SYMPATHOMIMETIC DRUGS CNS APPLICATIONS

- **Obesity**:
- an encouraging initial appetite-suppressing effect of these agents may be observed in obese humans,
- but there is no evidence that long-term improvement in weight control can be achieved with amphetamines alone.....
- intensive dietary and psychological counseling and support is needed

INDIRECT ACTING ADRENERGIC AGONISTS A. AMPHETAMINE-LIKE OR DISPLACERS

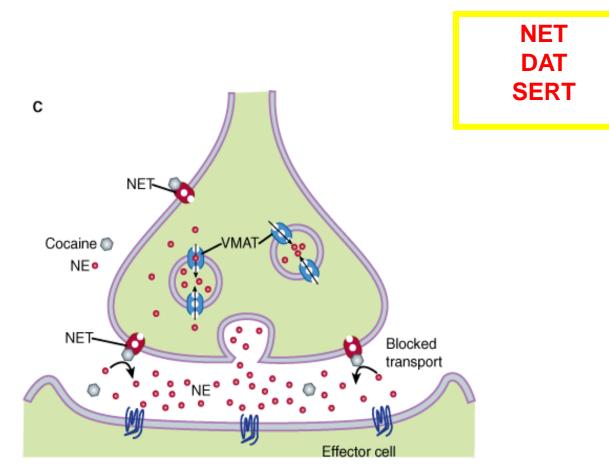
4. Methylphenidate:

- Amphetamine variant whose major pharmacologic effects and abuse potential are similar to those of amphetamine
- It is a **mild CNS stimulant**
 - with **more prominent effe**cts on **mental t**han on **motor activities**
- CNS application: <u>attention-deficit hyperactivity disorder</u> (ADHD).
- Some patients respond well to low doses of methylphenidate or to clonidine.
- **Extended-release** formulations may
 - simplify dosing regimens
 - and increase adherence to therapy, especially in school-age children

INDIRECT ACTING ADRENERGIC AGONISTS A. AMPHETAMINE-LIKE OR DISPLACERS

- 5. Modafinil: a <u>new</u> amphetamine substitute
- It is a **psychostimulan**t that **differs from amphetamine**
 - in structure,
 - neurochemical profile,
 - and behavioral effects
- Mech of action not fully known
 - Inhibits both NET and DAT,
 - and increases interstitial concentrations:
 - not only of norepinephrine and dopamine, but also serotonin and glutamate
 - while decreasing GABA levels

THERAPEUTIC USES OF SYMPATHOMIMETIC DRUGS CNS APPLICATIONS


- All amphetamine-like and displacer have:
 - a mood-elevating (euphoriant) effect,
 - alerting, & sleep-deferring action
 - that is manifested by improved attention to repetitive tasks
- Modafinil is <u>approved</u> for use in NARCOLEPSY (chronic sleep disorder)
- MODAFINIL is claimed to have <u>fewer disadvantages than</u> <u>amphetamine</u> in this condition
 -LESS excessive mood changes,
 - LESS <u>insomnia</u>
 - and LESS <u>abuse potential</u>

TYRAMINE

- It is by-product of tyrosine metabolism in the body and is also found in high concentrations in some fermented foods such as cheese (table 9-5)
- <u>Tyramine's spectrum</u> of <u>action</u> is <u>similar</u> to that of <u>norepinephrine</u>
- Inactive orally.....readily metabolized by MAO in the liver
- If the patient is taking <u>MAOI "inhibitors"</u> (MAO-A), BE CAREFUL!.....can precipitate <u>serious vasopressor</u> <u>effects</u>

INDIRECT ACTING ADRENERGIC AGONISTS B. CATECHOLAMINE REUPTAKE INHIBITORS

- **1.** Atomoxetine & reboxetine
- They are **selective inhibitors** of the **NET**
- Surprisingly it has little cardiovascular effect
 - because it has a <u>clonidine-like effect</u> in the central nervous system to <u>decrease sympathetic outflow</u>
- •
- while at the same time potentiating the effects of norepinephrine in the periphery

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology,* 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

INDIRECT ACTING ADRENERGIC AGONISTS B. CATECHOLAMINE REUPTAKE INHIBITORS

- Sibutramine: is a serotonin and norepinephrine reuptake inhibitor
 - and is the only <u>appetite suppressant approved</u> by the <u>FDA</u> for <u>long-term treatment of obesity</u>
- 3. Duloxetine: is also a widely used antidepressant with
 - serotonin and norepinephrine reuptake inhibitory effects

COCAINE:

Local anesthetic with <u>peripheral</u> indirect sympathomimetic action

- Enters the CNS and produces a shorter lasting but more intense amphetamine-like effect through
 - inhibiting dopamine reuptake into neurons in the "pleasure centers" of the brain
- + can be smoked, snorted into the nose, or injected for rapid onset of effect.....have made it a heavily abused drug
- INTERESTING....that dopamine-transporter knockout mice still self-administer cocaine, suggesting that cocaine may have additional pharmacologic targets

THERAPEUTIC USES OF SYMPATHOMIMETIC DRUGS CARDIOVASCULAR APPLICATIONS

- Condition in which :
 - an <u>increase</u> in <u>cardiac output</u> and <u>blood flow</u> to the tissue <u>is</u> <u>desired</u>
 - (severe hypotension, cardiac shock, heart failure)
- β agonist may be useful in this situation because they:
 - increase cardiac contractility
 - and reduce diastolic pressure by β2 effect
- Obutamine and dopamine are used (dopamine is DOC)
- Isoproterenol and epinephrine have been used:
 - in the temporary <u>emergency management</u> of complete <u>heart</u>
 <u>block</u> and <u>cardiac arrest</u>
 - _(electronic pacemaker are safer and more effective)

• Shock: Acute cardiovascular syndrome that results in:

- a critical reduction in perfusion of vital tissues,
- altered mental state,
- hypotension
- and oliguria

• Usually due to:

- hypovolemia,
- cardiac insufficiency,
- and altered vascular resistance

• Treatment:

- volume replacement
- and treatment of the underlying disease are the mainstays of the treatment
- Adrenergic receptor agonists may be used......:
- β receptor agonists increase heart rate and force of contraction, α receptor agonists increase peripheral vascular resistance, and dopamine (DOC) promotes dilation of renal and splanchnic vascular beds, in addition to activating α and β receptors

THERAPEUTIC USES OF SYMPATHOMIMETIC DRUGS CARDIOVASCULAR APPLICATIONS

- Condition in which a <u>DECREASE in blood flow</u> or <u>increase in blood pressure</u> is desired
- <u>Decrease blood flow:</u>
- α1 agonist are useful in situation in which vasoconstriction is appropriate
 - Such as <u>decongestant effect</u> (phenylephrine)
- α agonist are often mixed with local anesthetic to:
 - reduce the loss of anasthetic from the area of injection into the circulation (epinephrine is DOC)

THERAPEUTIC USES OF SYMPATHOMIMETIC DRUGS CARDIOVASCULAR APPLICATIONS

• Increase blood pressure

- spinal shock (NE) in which maintenance of blood pressure may help in maintain perfusion to brain, heart, & liver (we need increase in blood pressure)
- Shock due to <u>MI</u> is
 - usually made worse by vasoconstriction
- Chronic orthostatic hypotension: On standing, gravitational forces induce venous pooling, resulting in decreased venous return
 - Increasing peripheral resistance is one of the strategies to treat chronic orthostatic hypotension
 - **Midodrin**e, an orally **active** α_1 **agonist**, is frequently used for this indication

APPLICATION OF BASIC PHARMACOLOGY TO CLINICAL PROBLEM

Horner's syndrome

- is a condition (usually unilateral) that results from
 - interruption of the sympathetic nerves to the face
 - (caused by either preganglionic or postganglionic lesion, such as a tumor)

• Symptoms include:

- vasodilation,
- ptosis,
- miosis,
- and loss of sweating on the side affected.

HORNER'S SYNDROME

• Sympathomimetics administered as ophthalmic drops

- are also useful in **localizing** the **lesion** in **Horner's syndrome**
- If the lesion is postganglionic,
 - indirectly acting sympathomimetics (eg, cocaine, amphetamine) will not dilate the abnormally constricted pupil
 - because catecholamines have been lost from the nerve endings in the iris
 - But phenylephrine will dilate the pupil (acts directly on the α receptors on the smooth muscle of the iris)
- If the lesion is preganglionic,
 - it will show a normal response to both drugs,
 - since the postganglionic fibers and their catecholamine stores remain intact in this situation

Horner's syndrome

