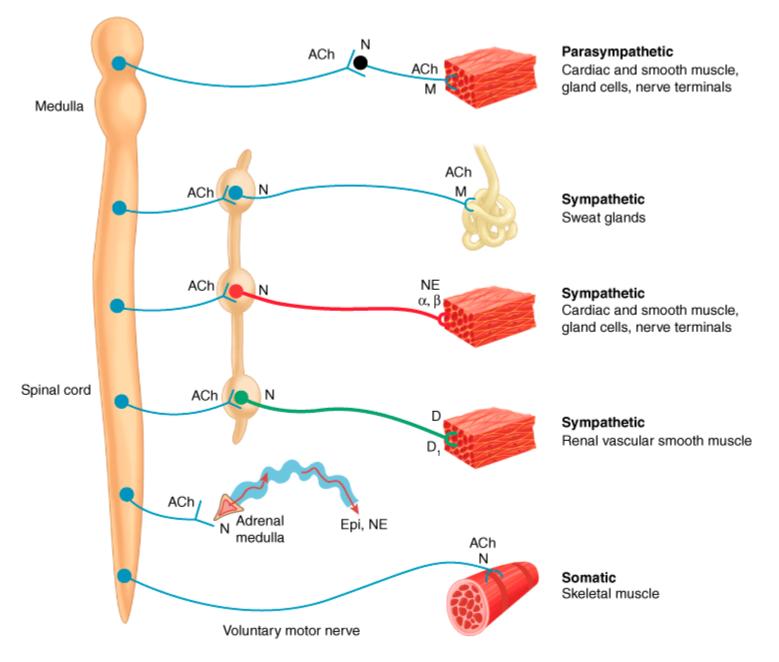

CHOLINOCEPTOR-ACTIVATING & CHOLINESTERASE-INHIBITING DRUGS

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology*, 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

- Drugs affecting the ANS are divided into two groups according to the type of neuron involved in the mechanism of action:
 - a) The **cholinergic drugs**: they <u>act</u> on r<u>eceptors</u> that are <u>activated</u> by acetylcholine (<u>Ach</u>)
 - b) The **adrenergic drugs**: <u>they act on receptors</u> that are <u>activated</u> by <u>norepinephrine</u> or <u>epinephrine</u>
- Cholinergic and adrenergic drugs both act by either stimulating or blocking receptors of the ANS


CHOLINERGIC RECEPTORS (CHOLINOCEPTORS)

Cholinoceptor denotes receptors that respond to acetylcholine

- Two families/subtypes of cholinoceptors were named after the alkaloids originally used in their identification:
 - nicotinic (N) and
 - muscarinic (M) receptors

I. NICOTINIC (N) RECEPTORS

- These receptors,
 - in addition to <u>binding ACh</u>,
 - also <u>recognize nicotine</u>,
 - but show a <u>week affinity for muscarine</u>
- N receptors are
 - transmembrane polypeptide
 - whose subunits form <u>cation-selective ion channels</u>
- <u>N receptors are located</u> on plasma membranes:
 - of postganglionic cells in <u>all autonomic ganglia</u>,
 - of <u>muscles</u> innervated by <u>somatic motor fibers</u> (i.e. Neuromuscular junction),
 - and of some CNS neurons

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

MECHANISM OF ACTION

• **<u>Binding</u>** of <u>2 Ach</u> molecules causes:

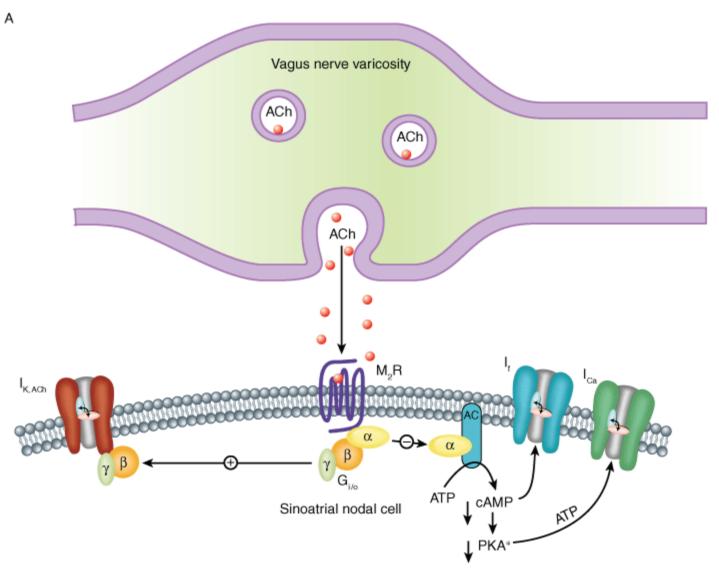
- channel opening
- with a <u>rapid influx of sodium and potassium ions</u> (calcium ions may also carry charge through the nicotinic receptor ion channel)
- This triggers <u>depolarization</u> of <u>the cell</u> and elicits:
 - a neruronal action potential (in postganglionic nerve)
 - or muscle contraction (in skeletal muscles)
- <u>N receptors</u> located at the <u>neuromuscular</u> junction are sometimes designated <u>NM</u> and the ganglionic (neuronal) receptors are designated <u>NN</u>

II. MUSCARINIC (M) RECEPTORS

- <u>Activation</u> of M1, M3, and M5 receptors produces an:
 - IP3, DAG (M1, M3)and stimulation of adenylyl cyclase
- <u>These receptors</u> are primarily <u>responsible</u> for <u>activating</u> <u>Ca⁺²-dependent</u> <u>responses</u>, such as
 - secretion by glands
 - and the contraction of <u>smooth muscle</u>
- Activation of <u>M2 and M4</u> receptors:
 - inhibits adenylyl cyclase

II. MUSCARINIC (M) RECEPTORS

• Muscarinic receptors: (GPCR)

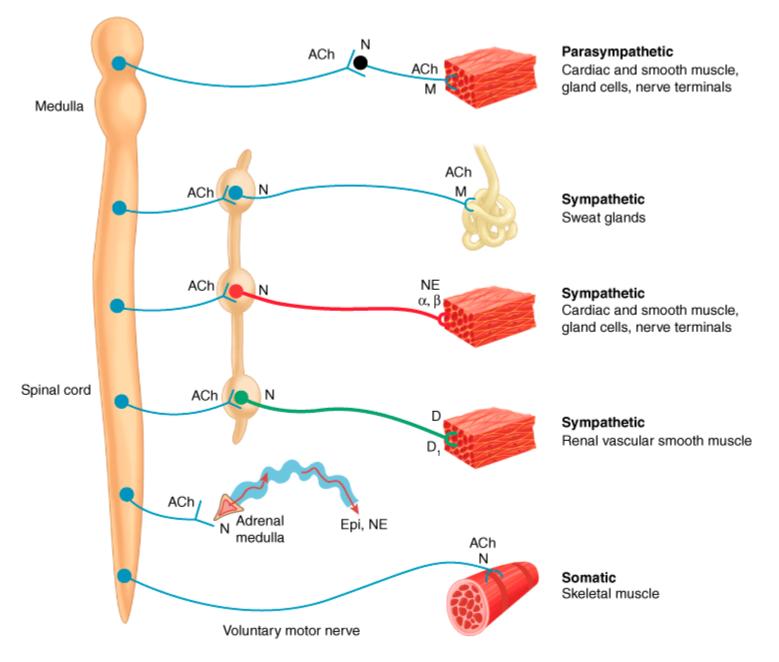

- -Contains <u>7 transmembrane</u> domains whose **third cytoplasmic** loop is **coupled to G** proteins
- In general, regulate the production of second messengers
- <u>Five subclasses</u> of muscarinic receptors: \underline{M}_1 , \underline{M}_2 , \underline{M}_3 , \underline{M}_4 , and \underline{M}_5 have been identified

Subtypes and Characteristics of Cholinoceptors

Receptor Type	Other Names	Location	Structural Features	Postreceptor Mechanism
M ₁	Neural	Nerves	Seven transmembrane segments, G _{q/11} protein- linked	IP ₃ , DAG cascade
M ₂	Cardiac M ₂	Heart, nerves, smooth muscle	Seven transmembrane segments, G _{i/o} protein-linked	Inhibition of cAMP production, activation of K ⁺ channels!
M ₃	Glandular	Glands, smooth muscle, endothelium!	Seven transmembrane segments, G _{q/11} protein- linked	IP ₃ , DAG cascade, Increase cGMP!
M ₄		CNS?	Seven transmembrane segments, G _{i/o} protein-linked	Inhibition of cAMP production
M 5		CNS?	Seven transmembrane segments, G _{q/11} protein- linked	IP ₃ , DAG cascade
N _M	Muscle type, end plate receptor	Skeletal muscle neuromuscular junction	Pentamer [(1) ₂ 1)]	Na⁺, K⁺ depolarizing ion channel
N _N	Neuronal type, ganglion receptor	CNS postganglionic cell body, dendrites	Pentamer with 2 subunits only, eg, $(4)_2(2)_3$ (CNS) or 3 $5(2)_3$ (ganglia)	Na ⁺ , K ⁺ depolarizing ion channel

MECHANISM OF ACTION

- <u>One</u> involves <u> G_{q} -protein coupling</u> of <u> M_{1} and <u> M_{3} </u> receptors to the release of the second messengers, <u>diacylglycerol (DAG)</u> and <u>inositol-1,4,5-trisphosphate (IP₃)</u></u>
 - <u>DAG modulates</u> the action of <u>protein kinase C</u>, an <u>enzyme important in</u> <u>secretion</u>,
 - whereas <u>IP₃</u> evokes the <u>release of calcium</u> from intracellular storage sites, which results in <u>contraction in smooth muscle</u>
- A <u>second</u> mechanism <u>couples M₂</u> muscarinic receptors to <u>adenylyl cyclase</u> through the <u>inhibitory G_i-coupling</u> protein
- A <u>third</u> mechanism <u>couples the same M₂</u> receptors via the subunit of <u>the G protein</u> to <u>potassium channels in the heart and elsewhere</u>
 - Muscarinic agonists facilitate opening of these channels

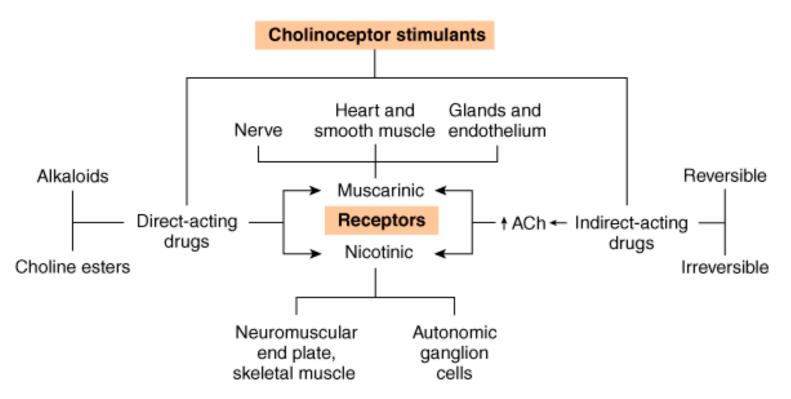

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

II. MUSCARINIC (M) RECEPTORS

• These receptors, in addition to:

- binding acetylcholine,
- also <u>recognize musca</u>rine,
- but show a weak affinity for nicotine
- These receptors have been found in:
 - The <u>CNS</u>
 - Organs innervated by parasympathetic nerves
 - Those tissues innervated by <u>postganglionic</u> sympathetic cholinergic nerves (sweat glands)



Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

OVERVIEW

- Cholinomimetics are classified by their mechanism of action because some
 - o bind directly to (and activate) cholinoceptors,
 - others act indirectly by inhibiting the hydrolysis
 of endogenous acetylcholine
- Cholinoceptor stimulants are also classified pharmacologically by their spectrum of action, depending on the type of receptor muscarinic or nicotinic—that is activated

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com

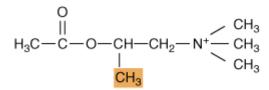
Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

DIRECT ACTING CHOLINERGIC STIMULANTS

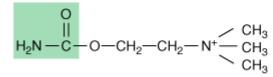
DIRECT ACTING CHOLINERGIC STIMULANTS

• Can be divided into two groups:

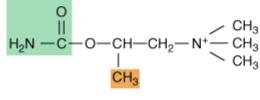
Esters of choline:


(Ach, methacholine, carbachol, bethanechol)

- <u>Alkaloids:</u> (muscarine, nicotine, pilocarpine, lobeline)
- <u>All</u> of the <u>direct-acting cholinergic</u> drugs have:
 - Ionger durations of action than <u>Ach</u>
 - and are <u>more selective</u>


CHOLINE ESTERS

$$\begin{array}{c} O \\ \parallel \\ H_3C - C - O - CH_2 - CH_2 - N^+ \swarrow \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array}$$



Methacholine (acetyl-β-methylcholine)

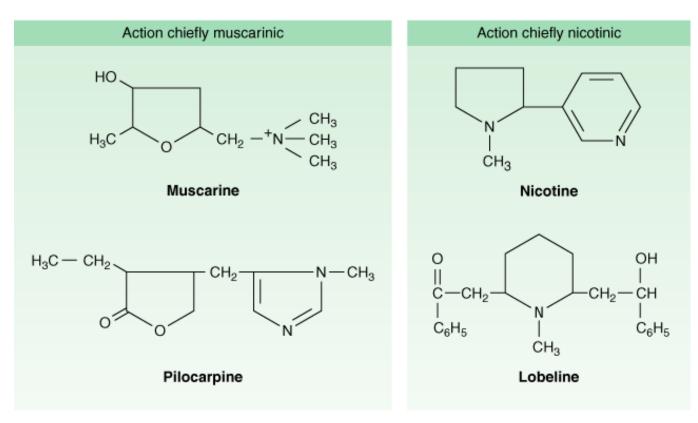
Carbachol (carbamoylcholine)

Bethanechol (carbamoyl-β-methylcholine)

<u>Esters of choline</u> are <u>permanently</u>
 <u>charged</u> and <u>relatively insoluble in</u>
 <u>lipids</u> (quaternary ammonium group)

- 1. Ach
- 2. Methacholine
- 3. Carbachol (carbamic acid ester)
- 4. Bethanechol (carbamic acid ester)
- <u>The β-methyl</u> group (methacholine,
 bethanechol) r<u>educes</u> the potency of
 these drugs at <u>nicotinic receptors</u>

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com


Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

DIRECT ACTING CHOLINERGIC STIMULANTS PHARMACOKINETICS

I. Choline esters

- Poorly absorbed and
- poorly distributed into the <u>CNS</u> because they are <u>hydrophilic</u> and
- susceptible to esterase <u>hydrolysis in the GIT</u>
- <u>Acetylcholine</u> is <u>very rapidly hydrolyzed</u> (A short <u>duration of</u> <u>action of 5-20 seconds</u> following a <u>large I.V bolus</u>)
- Methacholine is more resistant to hydrolysis, and the carbamic acid esters carbachol and bethanechol are still more resistant to hydrolysis by cholinesterase and have correspondingly longer durations of action

CHOLINOMIMETIC ALKALOIDS

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology*, 11th Edition: http://www.accessmedicine.com

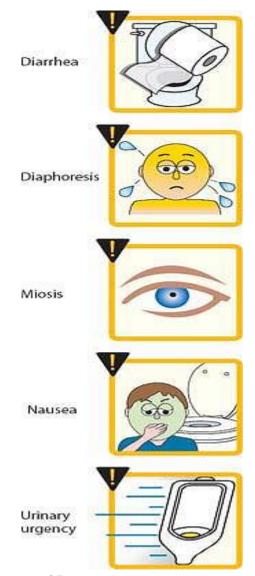
Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

DIRECT ACTING CHOLINERGIC STIMULANTS PHARMACOKINETICS

- **II.** Natural cholinomimetic alkaloids
- <u>Tertiary</u> amines (pilocarpine, nicotine, lobeline) are
 - **well absorbed** from most sites of administration,
 - and it <u>can cross the BBB</u>
- **Quaternary amine** (Muscarine) is
 - Iess completely absorbed from the GIT than the tertiary amines
 - but is **toxic when ingested** and it even **enters the brain**

DIRECT ACTING CHOLINERGIC STIMULANTS

• Methacholine, bethanechol, and pilocarpine

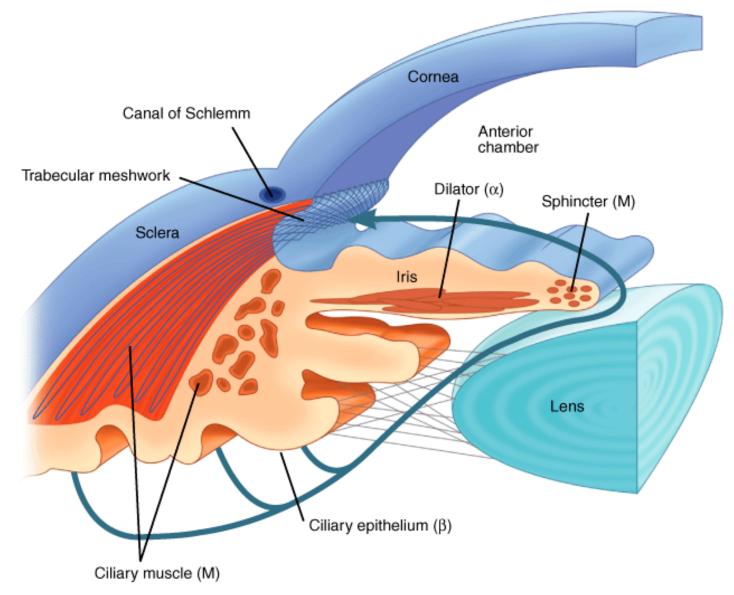

- are <u>selective agonists of M</u> receptors
- <u>Carbachol</u> and <u>ACh</u> can activate both <u>M and N</u> receptors:
 - at usual <u>therapeutic doses</u>, the <u>effects</u> of <u>carbachol</u> and <u>ACh</u> are <u>entirely</u> due to the activation of M receptors b/c of:
 - greater accessibility and abundance of the M receptors compared with the N receptors

PHARMACOLOGY OF ACETYLCHOLINE-LIKE AGONISTS

Choline Ester	Susceptibility to Cholinesterase	Muscarinic Action	Nicotinic Action
Acetylcholine chloride	++++	+++	+++
Carbachol	Negligible	++	+++
Methacholine	+	+++	None
Bethanechol	Negligible	+++	None
Muscarine	Negligible	+++	None

DIRECT ACTING CHOLINERGIC STIMULANTS ORGAN SYSTEM EFFECT

 Most of the direct organ system effects of muscarinic cholinoceptor stimulants are readily predicted from a knowledge of the effects of parasympathetic nerve stimulation and the distribution of muscarinic receptors



- Muscarinic agonists cause <u>contraction</u> of the <u>smooth muscle</u> of the:
 - Iris sphincter _____ miosis (contraction of pupil)
 - Ciliary muscle resulting in <u>accommodation</u> of the eye for <u>near vision</u> http://www.youtube.com/watch?v=p_xL07yxg0k
- These <u>effects</u> are <u>mediated</u> by the <u>activation</u> of

<u>M3</u>receptors

Note: Both effects:

- <u>facilitate the outflow of aqueous humor</u> into the <u>canal of</u> <u>Schlemm</u>,
- and <u>decrease intraocular pressure (IOP)</u>

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology*, *11th Edition*: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

http://en.wikipedia.org/wiki/File:Eye_dilate.gif

B. CARDIOVASCULAR SYSTEM

ACh has four primary effects on the cardiovascular system:

- a) Vasodilation*
- b) <u>Decrease</u> in <u>heart rate (negative chronotropic</u> effect)**
- c) D<u>ecrease</u> in <u>the conduction</u> velocity in the atrioventricular (AV) node (negative d<u>romotropic</u> effect)**
- d) <u>Decrease</u> in the <u>force of cardiac contraction</u> (negative <u>inotropic effect</u>)**

^{*} activation of endothelial M_{3} (Increase cGMP)

^{**} activation of M_2 receptors

B. CARDIOVASCULAR SYSTEM

• This result in:

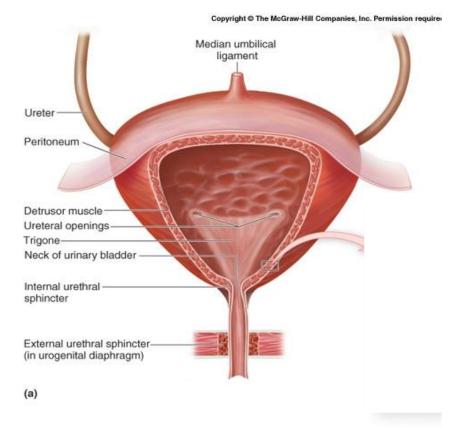
- marked reduction in peripheral vascular resistance,
- bradycardia,
- and decrease AV node conduction velocity
- in addition to <u>hypotension</u>

 This direct slowing effect is often <u>opposed</u> by <u>reflex sympathetic discharge</u>, <u>elicited</u> by the <u>decrease in blood pressure</u>

- The <u>net effect</u> on <u>heart rate</u> depends on:
 - Iocal concentrations of the agonist in the heart and in the vessels
 - and on the level of reflex responsiveness

C. Respiratory system*

- <u>Contraction of the smooth muscle</u> of <u>bronchial</u> tree (bronchoconstriction)
- <u>Stimulation of tracheobronchial secretion</u>


D. GIT**

- Increases the secretory and motor activity of the gut
- Salivary and gastric glands are strongly stimulated
- <u>Pancreas and small intestinal glan</u>ds are also stimulated to a <u>lower degree</u>
- <u>Most sphincters are relaxed</u>
- * M3 activation **M2 and M3 activation

E. Genitourinary tract

- stimulation of detrusor muscle (M3 activation) •
- and relaxation of trigone and sphincter muscles of the **bladder(M2 activation**)

promoting urination (voiding)

Note: human uterus is not notably sensitive to muscurinic agonists

- F. Miscellaneous Secretory Glands
- Increase secretion of:
 - <u>sweat</u>,
 - <u>lacrimal</u>,
 - and nasopharyngeal glands
- Mediated by <u>M3</u> activation

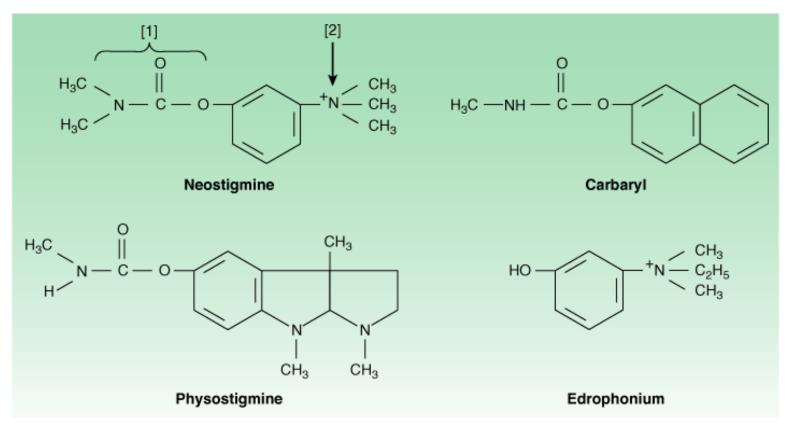
G. CNS

- Contains both muscarinic and nicotinic receptors (brain richer in muscarinic sites, spinal cord in nicotinic)
- Activation of M1-receptors in the brain areas involved in cognition
- Activation of M2R <u>cause</u> tremor, hypothermia, antinociception
- Activation of <u>M3R</u> increase appetite and increase body <u>fat mass</u>

- G. CNS:
- Chronic exposure to nicotine increases release of dopamine in the mesolimbic system
 - <u>mild alerting action and the addictive</u> property of <u>nicotine</u> absorbed <u>from tobacco</u>
- At high concentrations, nicotine induces:
 - tremor,
 - emesis,
 - and <u>stimulation of the respiratory center</u>
- At still higher levels, causes <u>convulsions</u>, which may terminate in <u>fatal coma (readily absorbed...insecticide)</u>

H. PNS:

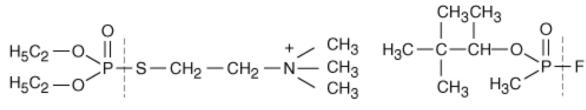
- <u>Autonomic ganglia</u> are important sites of nicotinic synaptic action (N_N)
- Activation of nicotinic receptors initiate AP in postganglionic neurons
 - (both parasympathetic and sympathetic)
- In CVS, the effects of nicotine are chiefly sympathomimetic:
 - hypertension and sympathetic tachycardia
 - may alternate with a bradycardia mediated by vagal discharge
- In the GIT and UT, the effects are largely parasympathomimetic: nausea, vomiting, diarrhea (N,V,D), and voiding of urine
- Prolonged exposure may result in <u>depolarizing blockade of the</u> <u>ganglia</u>


I. Neuromuscular Junction (N_M)

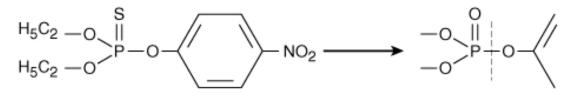
- When a <u>nicotinic agonist</u> is <u>applied directly</u> to a <u>NMJ</u>,
 - an **immediate depolarization** of the end plate results,
 - causing <u>muscle contraction</u>
- Depolarizing nicotinic agents that are not rapidly hydrolyzed (like nicotine itself) cause rapid development of depolarization blockade.
 - <u>Transmission blockade persists even when the membrane has</u> repolarized (flaccid paralysis)

INDIRECT ACTING CHOLINOMIMETICS

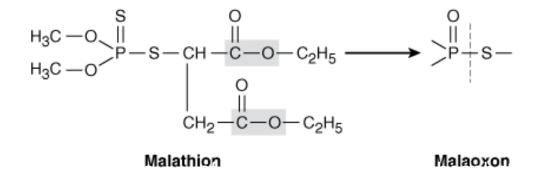
INDIRECT ACTING CHOLINOMIMETICS


- There are three chemical groups of cholinesterase inhibitors:
 - (1) <u>Simple alcohols</u> bearing a <u>quaternary</u> ammonium group, eg, edrophonium
 - (2) **Carbamates:** <u>carbamic acid</u> <u>esters</u> of <u>alcohols</u> having <u>quaternary or tertiary</u> <u>ammonium groups</u> (eg, neostigmine, physostigmine)
 - (3) **Organophosphates:** organic derivatives of phosphoric acid (eg, echothiophate)

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com


Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

- Absorption of the quaternary carbamates is negligible as well as CNS distribution
- Physostigmine is well absorbed from all site and can be used topically


Echothiophate

Soman

Parathion

Paraoxon

Source: Katzong B@, Masters SB, Trevor Al: Basic & Clinical Pharmesology. 11th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

INDIRECT ACTING CHOLINOMIMETICS PHARMACOKINETICS

Organophosphate cholinesterase inhibitors:

• The **thiophosphate** insecticides:

- parathion, malathion, and related compounds
- are <u>rapidly absorbed by all routes</u>

• <u>Malathion</u> (but <u>not parathion</u>):

- is <u>rapidly metabolized</u> by other pathways to <u>inactive</u> products in <u>birds</u> and <u>mammals</u>,
- but <u>not in insects;</u>
- safe enough for sale to general public

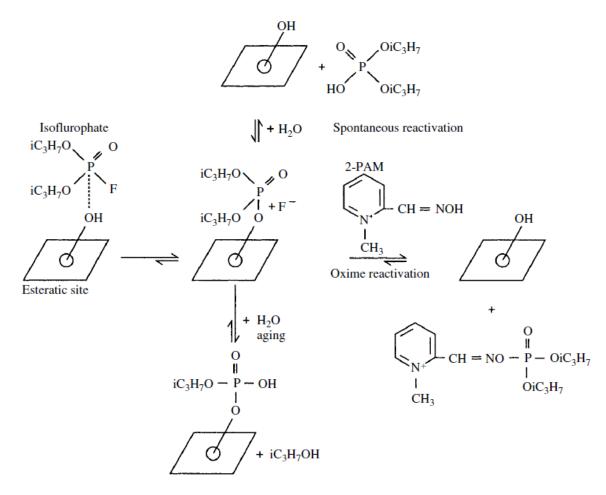
- <u>AchE</u> is the <u>primary target</u> of these drugs, but <u>butyrylcholinesterase is also inhibited</u>
- The <u>active site of AChE</u> comprises <u>two</u> distinc ⁰
 ⁰
 ¹
 ⁰
 ¹
 ¹
 ⁰
 ¹
 ¹
 - and an <u>esteratic site</u>

Acetylcholine

- 1st step: <u>ACh binds</u> to the enzyme's <u>active site</u> and <u>is</u> <u>hydrolyzed</u>, yielding <u>free choline</u> and the <u>acetylated enzyme</u>
- 2nd step, the <u>covalent acetyl-enzyme bond</u> is <u>split</u>, with the addition of <u>water (hydration</u>)
- The entire process takes place in approximately 150 microseconds

- Anti-cholinesterase drugs fall into three main groups according to the nature of their interaction with the active site:
 - I. Short acting anticholinesterase (quaternary alcohols, e.g. edrophonium):
 - <u>Reversibly</u> bind <u>electrostatically</u> and by <u>hydrogen bonds</u> to the active site,
 - thus preventing access of ACh (competitive inhibition)
 - The <u>enzyme-inhibitor complex</u> does <u>not</u> involve a <u>covalent</u> bond and is correspondingly <u>short-live</u>d (on the order of <u>2-10 minutes</u>)

- II. <u>Medium-duration</u> anticholinesterase (e.g. Neostigmate, pyridostigmate, and physostigmine):
- They undergo a <u>two-step hydrolysis</u> sequence <u>analogous to</u> <u>that for Ach</u>
- The <u>covalent bond</u> of the <u>carbamoylated enzyme</u> is considerably <u>more resistant</u> to the <u>second (hydration)</u> <u>process</u>,
 - and <u>this step</u> is correspondingly <u>prolonged</u> (on the order of <u>30</u> <u>minutes to 6 hours)</u>


- III. Irreversible anticholinesterases (synthetic organophosphate compounds):
- They undergo <u>initial binding</u> and <u>hydrolysis</u> by the enzyme, resulting in a phosphorylated active site
- The <u>covalent phosphorus-enzyme</u> bond is <u>extremely stable and</u> <u>hydrolyzes in water at a very slow rate (hundreds of hours</u>)
- Phosphorylated enzyme may undergo aging:
 - breaking one of the oxygen-phosphorus bonds of the inhibitor,
 - further strengthening the phosphorus-enzyme bond
 - and making it <u>impossible for chemical reactivation</u>

Cholinesterase regenerator:

- Strong nucleophiles like pralidoxime:
 - are able to split the phosphorous-enzyme bond and can be used in reversal of organophosphate insecticide poisoning (before aging)

• Once aging has occurred,

 the <u>enzyme-inhibitor complex</u> is even <u>more stable</u> and is <u>more difficult</u> to break, even with oxime regenerator compounds

FIGURE 12.4

Isofluorophate reaction at AChE esteratic site, aging, spontaneous reactivation, and oxime reactivation. *Left*, the nucleophilic attack on the phosphorus of isofluorophate by the serine oxygen. This results in a stable phosphorylated enzyme intermediate, which undergoes dephosphorylation at a negligible rate (*top*). A more favorable reaction is the loss of an isopropoxy group, a process termed aging (*bottom*). This renders the phosphorylated enzyme resistant to dephosphorylation by an oxime. The original phosphorylated intermediate (*center*) will react with the nucleophilic oxygen of pralidoxime (2-PAM), resulting in dephosphorylation of the enzyme and formation of an oxime phosphonate (*lower right*).

INDIRECT ACTING CHOLINOMIMETICS ORGAN SYSTEM EFFECT

a. Central nervous system (CNS)

- At <u>low concentrations</u>, the <u>lipid-soluble</u> cholinesterase inhibitors cause:
 - <u>activation</u> on the <u>electroencephalogram</u>
 - and a subjective <u>alerting response</u>.
- At higher concentrations, cause
 - generalized convulsions,
 - which may be <u>followed by coma</u> and <u>respiratory</u> <u>arrest.</u>
- b. Eye, Respiratory Tract, GIT, & Urinary Tract???

INDIRECT ACTING CHOLINOMIMETICS ORGAN SYSTEM EFFECT

- c. Cardiovascular system
- The actions of anticholinesterase agents on the CV system are complex
- The cholinesterase inhibitors can <u>increase</u> activity in <u>both</u> <u>sympathetic and parasympathetic ganglia supplying the heart</u>
- and <u>at the acetylcholine receptors</u> on <u>neuroeffector cells</u> (<u>cardiac</u> <u>and vascular smooth</u> muscles) that <u>receive cholinergic</u> <u>innervation</u>

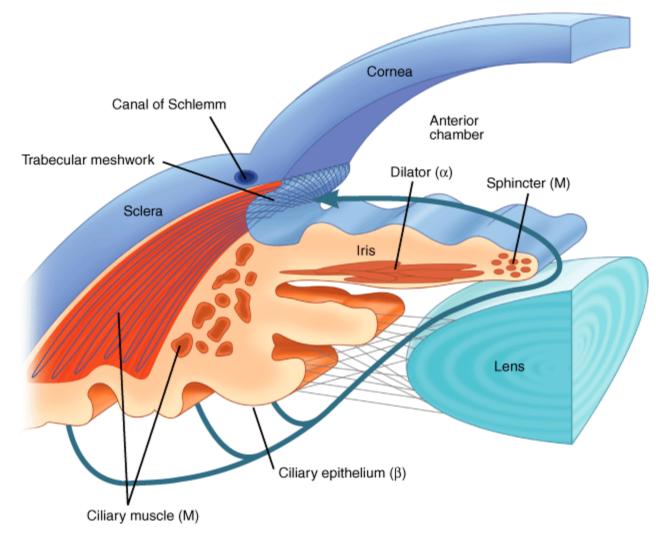
- c. Cardiovascular system
- Heart: <u>parasympathetic effects</u> predominate (<u>negative</u> chronotropic, inotropic and dromotropic, <u>decrease</u> in <u>cardiac</u> <u>output</u> and <u>blood</u> pressure)
- Vascular smooth muscle: cholinesterase inhibitors have minimal effects (most vascular beds lack cholinergic innervation)
-increase in systemic vascular resistance and blood pressure that is initiated at sympathetic ganglia
- Net cardiovascular effects:
 - modest bradycardia,
 - decrease CO,
 - increase in BP
- <u>Toxic doses:</u> more marked <u>bradycardia</u> (occasionally tachycardia) and <u>hypotension</u>

d. Neuromuscular junction

• Neuromuscular transmission in skeletal muscle is:

- **<u>enhanced</u>** by <u>low concentration</u>s of anticholinesterase agents,
- whereas <u>high concentrations</u> result in <u>fibrillation</u> of muscle fibers

• With marked inhibition of AchE,


- depolarizing neuromuscular blockade occurs;
- Neostigmine: <u>additional direct nicotinic agonist effect</u> at the NMJ;
 - effective in the therapy of myesthenia gravis

a. Glaucoma

• In the **past**, glaucoma was treated **with either:**

- direct agonists (<u>pilocarpine</u>, methacholine, carbachol)
- or cholinesterase inhibitors (physostigmine, demecarium, echothiophate, isoflurophate)
- For <u>chronic glaucoma</u>, these drugs have been largely <u>replaced</u> by <u>topical</u>:
 - <u>B-blockers</u>
 - and prostaglandin derivatives
- Accommodative esotropia (strabismus caused by accommodative error) in young children is sometimes diagnosed and treated with cholinomimetic agonists

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology,* 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

a. Glaucoma

- <u>Acute</u> angle-closure glaucoma:
 - a <u>medical emergency</u>
 - that is <u>frequently treated initially with drugs</u>
 - but <u>usually requires surgery</u> <u>for permanent</u> correction

• Initial therapy:

- often consists of a combination of:
 - a direct muscarinic agonist
 - and a cholinesterase inhibitor
 - (eg, pilocarpine plus physostigmine)
- Once the intraocular pressure is controlled and the danger of vision loss is diminished,
 - the patient can be prepared for <u>corrective surgery</u> (iridectomy)
- **Open-angle glaucoma:** <u>chronic diseases</u> that are <u>not</u> <u>amenable to traditional surgical</u> correction, (now <u>laser</u> <u>techniques</u> available!!!)

b. Gastrointestinal and Urinary Tracts

- In depression of smooth muscle activity without obstruction,
- <u>direct or indirect</u> cholinomimetic with <u>muscarinic effects</u> may be helpful in:
 - **1. postoperative ileus** (atony or paralysis of the stomach or bowel following surgical manipulation)
 - 2. congenital megacolon
 - 3. Urinary retention
 - 1. postoperatively or
 - 2. postpartum or
 - 3. secondary to spinal cord injury
 - 4. or disease (neurogenic bladder)

4. sometimes used to **increase the tone** of **the lower esophageal sphincter** in patients with <u>reflux esophagitis</u>

- **b)** Gastrointestinal and Urinary Tracts
- Of the choline esters,
 - <u>bethanechol</u> is the <u>most widely used</u> for these disorders
- Of the cholinesterase inhibitors,
 - neostigmine is the most widely used for these applications
- Pilocarpine has long been used to increase salivary secretion
- Cevimeline: a <u>new direct-acting muscarinic agonist</u> used for the treatment of <u>dry mouth</u> associated with <u>Sjögren's syndrome (dry mouth and eyes)</u>

- c. Neuromuscular Junction
 - Myasthenia gravis: an <u>autoimmune disease</u> affecting <u>skeletal</u> <u>muscle (antibodies</u> are produced against the <u>nicotinic receptor</u>) Symptoms:
 - 1. ptosis (lazy eye),
 - 2. diplopia,
 - 3. difficulty in speaking and swallowing,
 - 4. and extremity weakness
 - 5. (in extreme cases may interfere with respiration)
 - Cholinesterase inhibitors—but not direct-acting acetylcholine receptor agonists—are used

Edrophonium is sometimes used as a diagnostic test!

- (A <u>2 mg dose</u> is injected <u>IV</u> after <u>baseline muscle strength</u> has been measured. If no reaction occurs after 45 seconds, an <u>additional 8</u> <u>mg</u> may be injected).
- An <u>improvement</u> in <u>muscle strength</u> that <u>lasts about 5 min</u>. will usually observed in myesthenia gravis

- c. Neuromuscular Junction
 - Long-term therapy: pyridostigmine; neostigmine or ambenonium:
 - require <u>frequent dosing</u>
 - every <u>6 hours</u> for <u>pyridostigmine and ambenonium</u>
 - and every <u>4 hours</u> for <u>neostigmine</u>)
 - Sustained-release preparations should be used only at night and if needed
 - Longer-acting cholinesterase inhibitors <u>ARE NOT USED</u>,
 - because the <u>dose requirement</u> in this disease <u>changes too rapidly</u> to <u>permit</u> <u>smooth control of symptoms</u> with long-acting drugs
 - Immunosuppressant drugs and <u>thymectomy</u> are also used

c. Neuromuscular Junction

Muscarinic effects (of therapy)

- (abdominal cramps, diarrhea, increased salivation, miosis, bradycardia etc)
- can be controlled by the administration <u>of atropine</u>

2. To reverse neuromuscular blockade after surgery:

- <u>Neuromuscular blockade</u> is frequently <u>produced</u> as an <u>adjunct to</u> <u>surgical anesthesia</u>, using <u>nondepolarizing</u> <u>neuromuscular relaxants</u> such as <u>pancuronium</u> and newer agents
- neostigmine and edrophonium are the drugs of choice (I.V or I.M)

d. Antimuscarinic Drug Intoxication (atropine, tricyclic antidepressants)

• Physostigmine has been used for this application,

- because <u>it enters</u> the central nervous system and <u>reverses</u> the <u>central</u>
- as well as the peripheral signs of muscarinic blockade

However, can produce <u>dangerous central nervous system</u>
 <u>effec</u>ts....just in severe cases!

- e. CNS (Alzheimer's Disease)
- Tacrine, donepezil, galantamine, & rivastigmine are approved for:
 - the **palliative** treatment of Alzheimer's disease
- These agents can cross the BBB to produce a reversible inhibition of AChE in the CNS
- They produce modest but significant improvement in the cognitive function of patients with mild to moderate <u>Alzheimer's</u> disease,
 - but they do not delay progression of the disease
- Hepatic toxicity is significant with tacrine

TOXICITY

- A. **Direct-Acting <u>Muscarinic Stimulants</u>** (pilocarpine, and the choline esters)
 - Overdosage is characterized by exaggeration of the various parasympathomimetic effects:
 - nausea, vomiting, diarrhea (N,V,D)
 - salivation,
 - sweating,
 - urinary urgency,
 - hypotension with reflex tachycardia,
 - o bronchial constriction
 - Resembles that produced by consumption of mushrooms of the genus *Inocybe*
 - Tx: Atropine

TOXICITY

B. Direct-Acting Nicotinic Stimulants (nicotine)

ACUTE TOXICITY: the fatal dose of nicotine is ~40 mg, or 1 drop of the pure liquid (contents of two regular cigarettes)

- Ingestion of nicotine by infants or children is
 - usually followed by <u>vomiting</u>,
 - limiting the amount of the alkaloid absorbed
- Nicotine is <u>also used</u> in a number of <u>insecticides</u>
- less important than CHRONIC NICOTINE TOXICITY "cigarette smoking"

• Several approaches to help patients stop smoking:

Replacement therapy with nicotine (gum, transdermal patch, nasal spray, or inhaler)

- have <u>low abuse potential</u> and <u>are effective</u>
- Their action derives from slow absorption of nicotine
- and <u>reduces the desire to smoke</u>

Varenicline: a recently approved drug for smoking cessation

- It is a synthetic drug with partial agonist action at nicotinic receptors
- its use is limited by
 - nausea, insomnia and exacerbation of psychiatric illnesses, including anxiety and depression.
- **Suicidal ideation** has also been reported in some patients

TOXICITY

- c. **Cholinesterase inhibitor:**
- The <u>major source</u> is <u>pesticide</u> use in agriculture & at home
- The <u>dominant initial signs</u> are those of <u>muscuranic excess</u> (<u>salivation, miosis, sweating</u>...) (acute toxicity)
- and depolarizing neuromuscular blockade (peripheral nicotinic effect).

• Therapy:

- 1.maitanance of vital sign respiration in particular
- 2.decontamination removal of cloths and washing the skin in case of dusts and sprays
- 3.atropine parenterally
- 4. Pralidoxime.

<u>Chronic exposure</u> to certain <u>organophosphate</u> compounds causes n<u>europathy</u> associated with <u>demyelination of axon</u>