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ABSTRACT 

Endothelial Nitric Oxide synthase (eNOS) has an emerging role in chronic inflammation and cancer 
thus prompting continuous attempts to discover new inhibitors of this enzyme. Towards this end, 
efforts to discover and optimize new eNOS inhibitors are essential. Therefore, we explored the 
pharmacophoric space of 151 eNOS inhibitors using ten diverse sets of inhibitors to identify high 
quality pharmacophores. Subsequently, genetic algorithm and multiple linear regression analysis 
were employed to select an optimal combination of pharmacophoric models and 2D physicochemical 
descriptors capable of accessing a self-consistent quantitative structure-activity relationship (QSAR) 
of optimal predictive potential (r2

121 = 0.77, F = 63.5, r2
LOO = 0.62, and r2

PRESS against 30 external test 
inhibitors = 0.63). Interestingly, only one pharmacophore emerged in the optimal QSAR equation. 
Comparisons with the binding site of eNOS and receiver-operating characteristic (ROC) curves 
analysis established the validity of this QSAR-selected pharmacophore model. We employed the 
pharmacophoric model and associated QSAR equation to screen the national cancer institute list of 
compounds (NCI).  
Keywords: Endothelial Nitric Oxide Synthase, Quantitative Structure Activity Relationship, In silico 

screening, Pharmacophore modeling. 
 

INTRODUCTION 
 
Nitric oxide (NO)1-2, is a double-edged sword 

molecule, beneficial as a messenger or modulator for 
immunological self-defense but at the same time, 
potentially toxic upon excessive production.1 Nitric oxide 
is synthesized by a family of enzymes called nitric oxide 
synthases (NOS),2 which catalyze the oxidation of L-
arginine to L-citrulline and nitric oxide. Classically, three 
distinct isoforms of NOS have been identified and 
characterized as products of different genes, with 
different subcellular localization, regulation, catalytic 
properties, and inhibitor sensitivity: endothelial NOS 

(eNOS) and neuronal NOS (nNOS), expressed 
constitutively in the vascular endothelium and in the 
nervous system, respectively. nNOS acts as a 
neurotransmitter3 while eNOS regulates the blood 
pressure and the vascular tone.4-6 The third isoform is 
inducible NOS (iNOS) which generates high levels of 
NO that plays an important role in the regulation of 
immune reactions.7, 8  

Obviously, under- and over-production of NO is 
responsible for a number of pathological conditions. 
Underproduction of NO by eNOS causes hypertension 
and atherosclerosis.9 Whereas overproduction has 
recently been reported to modulate cancer-related events 
(angiogenesis, apoptosis, cell cycle, invasion, and 
metastasis).10 In fact, clinical studies on human colon 
cancer samples suggest that a high eNOS expression can 
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be positively correlated with tumor cell vascular 
invasion11 and trophoblast cancer cell vascular invasion.12 
On the other hand, overproduction of NO by brain nNOS 
is associated with stroke and chronic neurodegenerative 
diseases, such as Alzheimer’s, Parkinson’s, and 
Huntington’s diseases.13 Whereas overproduction of  
iNOS is implicated in tissue damage and cell apoptosis 
following inflammation and ischemia, rheumatoid 
arthritis, onset of  Colitis14 and cancer15.  Appreciation of 
the pathological roles of eNOS-derived NO has 
stimulated interest in the discovery of novel eNOS 
inhibitors for potential therapeutic use in cancer 
prevention and treatment. 

There is a bewildering array of NOS inhibitors 
described in the literature. The prototypical NOS 
inhibitors were analogs of L-arginine such as NG-nitro-L-
arginine (L-NNA)16 and NG-monomethyl-L-arginine (L-
NMMA)17. Non-L-arginine type NOS inhibitors such as 
Nδ-iminomethyl-L-ornithine18, S-alkyl-L-thiocitrulline19, 
and (1S,4S,6R,7R) 7-chloro-3-imino-5-methyl-2-
azabicyclo(4.1.0) heptane-hydrochloride (ONO-1714)20 
were also investigated and reported to exhibit potent 
inhibition with variable selectivity for NOS and its 
isoforms. These inhibitors have been investigated as 
mechanism-based inactivators of nitric oxide synthase. 
Their inhibitory effects are caused by competition with 
the natural substrate of  NOS, L-arginine, in the binding 
site and/or in the oxidizing center of the enzyme (heme) 
or by the interaction with peptide motifs of the enzyme 
that influence its dimerization, affinity for cofactors, and 
interaction with associated proteins.21-23  

In the last few years extensive structure-based 
investigations were carried out on NOS inhibitors to 
understand their mechanisms of inhibition, interactions 
within the enzymatic catalytic site, time dependence and 
selectivity for individual isoforms.  Several crystal 
structures have been solved for truncated oxygenase 
domains of bovine eNOS  and human eNOS24 with a 
variety of bound ligands. Recently, Aparna et al25 have 
reported a molecular dynamics study on NOS isoforms. 
Several other workers also employed the structure-based 
design methods to obtain new NOS lead ligands.26-30  

However, the main focus of recent efforts towards the 
development of new eNOS inhibitors has concentrated on 
the structure-based ligand design31-33, e.g., de novo 
design/docking34. Structure-based design efforts were fueled 
by the availability of satisfactory crystallographic structures 
for eNOS. To date, several eNOS X-ray complexes are 
documented in the Protein Data Bank (e.g., PDB codes: 
3N5P, 3N5Q, 3N56, 3N67, 3N6C, 3NLG, 3E7S, 1RS8, 
1RS933 and 1P6N with the resolution range of 2.09 to 2.90 
Å). However,  crystallographic structures are limited by 
inadequate resolution35 and  ligand–protein complex 
artifacts36-38 and ignore the structural heterogeneity related to 
protein anisotropic motion and discrete conformational 
substrates 39.  

The continued interest in designing new eNOS 
inhibitors and the lack of adequate ligand-based 
computer-aided drug discovery efforts combined with the 
drawbacks of structure-based design prompted us to 
explore the possibility of developing ligand-based three-
dimensional (3D) pharmacophore(s) integrated within a 
self-consistent QSAR model. This pharmacophore 
model(s) will then be used as 3D search queries to 
discover new eNOS inhibitory scaffolds. Our innovative 
approach was validated previously through the successful 
discovery of  new inhibitory leads scaffolds against 
glycogen synthase kinase 3β40, dipeptidyl peptidase41, 
hormone sensitive lipase42, bacterial MurF43, protein 
tyrosine phosphatase 1B44, influenza neuraminidase45 and 
cholesteryl ester transfer protein46, renin47, peroxisome 
proliferator-activated receptor gamma48,  β-D-
Galactosidase49, β-D-Glucosidase50. 

A Catalyst-Hypogen module embedded in a 
Discovery Studio (version 2.5)51  was employed to 
construct several logical  binding hypotheses for an 
eNOS inhibitor. Afterward, genetic function algorithm 
(GFA) and multiple linear regression (MLR) analyses 
were employed to search for an optimal QSAR that 
combines high-quality binding pharmacophores with 
other molecular descriptors and capable of explaining 
bioactivity variation across a collection of diverse eNOS 
inhibitors. The optimal pharmacophore was validated by 
a receiver-operating characteristic (ROC) curve. 
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RESULTS AND DISCUSSION 
The drug receptor model interaction generated by the 

Hypogen-Catalyst model depends on the ligand structure. 
40, 42, 43, 45, 46, 52  Therefore, training molecules chosen 
varies in bioactivities from 3 to 4 orders of magnitude 
according to the geometric localization of their chemical 
features. The Hypogen-Catalyst model identifies a 3D 
array of a maximum of five chemical features common to 
active training molecules, which provides a relative 
alignment for each input molecule consistent with their 
binding to a proposed common receptor site. The 
chemical features considered can be hydrogen bond 
donors and acceptors (HBD and HBA), aliphatic and 
aromatic hydrophobes (Hbic), positive and negative 
ionizable (PosIon and NegIon) groups and aromatic 
planes (RingArom). The conformational flexibility of 
training ligands is modeled by creating multiple 
conformers, judiciously prepared to emphasize 
representative coverage over a specified energy range. 
Catalyst pharmacophores have been used as 3D queries 
for mining structural databases for new active leads.40, 42-

46 In the present project, we generated diverse hypotheses 
for a series of eNOS inhibitors. A total of 151 compounds 
were used in this study (Table A under Supplementary 
Material).28, 53-65 Ten training subsets were selected from 
the collection (Table B under Supplementary Material). 
Each subset consisted of inhibitors of wide structural 
diversity that seem to follow certain common structure-
activity rules. 

Exploration of eNOS Pharmacophoric Space  
The literature was surveyed to collect structurally 

diverse eNOS inhibitors (1-151, Table A under 
Supplementary Material).28, 53-65 The structures were used 
for conformational analyses. The conformational space of 
each inhibitor was sampled by a poling algorithm. 
Subsequently, many pharmacophoric binding modes 
assumed by eNOS inhibitors were identified (see 
Pharmacophoric Hypotheses Generation in Experimental 
and Supplementary Materials).50 The pharmacophoric 
space of eNOS inhibitors was explored through 64 
Hypogen automatic runs and employed ten carefully 
selected training subsets: subsets I-X in Table B under 

Supplementary Material (See Pharmacophoric 
Hypotheses Generation in Experimental and 
Supplementary Materials). Each training subset complied 
with certain general 3D SAR rules.  

Guided by our rationally restricted pharmacophoric 
exploration concept, we restricted the software to explore 
pharmacophoric models incorporating from zero to two 
PosIon features, from zero to three HBA, from zero to 
three HBD, and from zero to two Hbic features, as shown 
in Table C under Supplementary Material. Furthermore, 
we instructed the Hypogen to explore only 4- and 5-
featured pharmacophores (as shown in Table C under 
Supplementary Material). In each run, the resulting 
binding hypotheses were automatically ranked according 
to their corresponding “total cost” value (see Assessment 
of the Generated Hypotheses). An additional validation 
technique based on Fisher’s randomization test 50 was 
performed (see Assessment of the Generated 
Hypotheses).51 Eventually, 640 pharmacophore models 
emerged from 64 automatic Hypogen runs, out of which 
only 620 models illustrated Cat Scramble confidence 
levels ≥ 85%. These successful models were clustered 
and the best representatives (62 models) were used in 
subsequent QSAR modeling (see Clustering of the 
Generated Pharmacophore Hypotheses). Table 1 shows 
the statistical criteria of representative cluster centers. 
Clearly, from the table, representative models shared 
comparable features and acceptable statistical success 
criteria. The fact that many pharmacophore models were 
optimal and statistically comparable suggests the ability 
of eNOS ligands to assume multiple pharmacophoric 
binding modes within the binding pocket. Therefore, it is 
quite challenging to select any particular pharmacophore 
hypothesis as a sole representative of the binding process. 

QSAR Modeling 
Pharmacophore modeling of an eNOS inhibitor 

furnished several binding hypotheses of comparable 
success criteria which prompted us to employ a classical 
QSAR analysis to search for the best combination of 
pharmacophore(s) and other 2D descriptors capable of 
explaining bioactivity variation across the whole list of 
collected inhibitors (1-151, Table A in Supplementary 
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Materials). The fit values obtained by mapping 
representative hypotheses (62 models) against a collected 
eNOS inhibitor (1-151) were enrolled, together with 
nearly 250 other physicochemical descriptors, as 
independent variables (genes) in GFA-MLR-QSAR 
analysis (see QSAR Modeling). 40, 42-46  

Interestingly, all our attempts to achieve self-
consistent and predictive QSAR models were futile 
prompting us to evaluate an alternative modeling 
strategy, namely, to employ ligand efficiency based on 
heavy atoms (log(Ki)/LEHA) as the response variable 
instead of activity (log (Ki)). This novel strategy proved 
successful in achieving self-consistent QSAR models.66  

However, since it is essential to access the predictive 
power of the resulting QSAR models on an external set of 
inhibitors, we randomly selected 30 molecules (marked 
with double asterisks in Table A, see QSAR Modeling) 
and employed them as external test molecules for 
validating the QSAR models (r2

PRESS).  Moreover, all 
QSAR models were cross validated automatically using 
the leave-one-out cross-validation in Discovery Studio 
2.5.51 Eq. (1) shows the details of the optimal QSAR 
model. Fig. 1 shows the corresponding scatter plots of 
experimental versus estimated bioactivities for the 
training and testing inhibitors. 

 
 
 

− 0.18 + 1.5 x 10-3 (HypoVI/34/1)2 + 2.29 
x 10-3(JursWPSA3) + 1.08 (Atype H48)− 
0.01(Atype H48 x JursWPSA) − 2.32 x 10-

3[197.2−(JursWPSA3)2] − 1.17 (Atype H48 
x JursRASA)    
r2121= 0.77, F-statistic = 63.5, r2Adj = 
0.76, r2LOO = 0.62, r2PRESS = 0.63 …..(1) 

 
Where r2

121 is the correlation coefficient against 121 
training compounds, rLOO

2 is the leave-one-out correlation 
coefficient, r2

adj is r2 adjusted for the number of terms in 
the model and r2

PRESS is the predictive r2 determined for 
the 30 test compounds.51, 67 HypoVI/34/1 represents the 
fit values of the training compounds against the first 

pharmacophoric hypotheses generated in the 34th 
Hypogen run employing subset VI (Table B under 
Supplementary Materials). The fit values were calculated 
based on Eq. (D) under Supplementary Materials. 
JursWPSA3 is surface-weighted charged partial surface 
area calculated by multiplying the total charge weighted 
positive surface area (determined from the product of 
partial positive solvent accessible surface area multiplied 
by the total positive charge) by the total molecular 
solvent-accessible surface area and dividing by 1000. 
JursRASA is the relative hydrophobic surface area 
determined by dividing the total hydrophobic surface area 
by the total molecular solvent-accessible surface area.

 

AtypeH48 is a member of the thermodynamic 
AlogP_Atypes family of descriptors and it encodes for 
the hydrophobic contributions of  hydrogen atoms 
attached to unsaturated centers (i.e., sp2 or sp hybridized 
carbon atoms) and geminal to oxygen or nitrogen atoms, 
usually associated with heterocyclic aromatic rings.53 
Tables D and F under Supplementary Materials show  
values of QSAR descriptors in equation (1) calculated for 
training compounds and captured hits, respectively. 

Noticeably, one of the descriptors (i.e., JursWPSA3) 
emerged in equation (1) in spline format. The spline 
terms employed herein are “truncated power splines” and 
are denoted by bolded brackets (( )). For example, (f(x) -
a) equals zero if the value of (f(x) - a) is negative. 
Otherwise, it equals (f(x) - a). 51 

Emergence of HypoVI/34/1 in equation (1) suggests 
that this model resembles the binding interactions tying 
various ligands with eNOS. The bolded row in Table 1 
corresponds to the success criteria of HypoVI/34/1. Fig. 
2 shows HypoVI/34/1 and how it fits the potent training 
compound 148 (Ki = 0.35 �M) while Table 2 shows the 
X, Y, and Z coordinates of the pharmacophore.  

Emergence of JursWPSA3 in equation (1) illustrates a 
certain role played by the ligands’ positive charges in the 
binding process. However, the mixed contributions of 
this descriptor in bioactivity (positive and negative 
regression slopes) suggest that the ligands' charges play a 
complex role in binding. On the other hand, the 
emergence of Jurs-RASA in equation (1) associated with 

=
LEHA

Log )Ki/1(
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a negative slope suggests that ligand-eNOS binding is 
adversely influenced by the ligand's extended 
hydrophobic surface area. This trend can be explained 
based on the hydrophilic nature of the binding site of 
eNOS, in particular, due to the presence of guanidino of 
ARG252, the carboxylic acid of GLU363 and the two 
carboxylic acids of heme moiety within the binding site 
(see Figures 3A and 3B). These groups require the 
presence of hydrophilic complementary groups in bound 
ligands to allow effective binding. Moreover, the 
emergence of AtypeH48 associated with a positive slope 
suggests that ligands exhibiting alkynes or electron-rich 
heterocyclic rings, e.g., furans or pyrroles preferably 
interact with the eNOS catalytic site via π-stacking 
against the electron-deficient heme aromatic system. 

Comparing Pharmacophore Models with 
Crystallographic Complexes 

To further emphasize the validity of our 
pharmacophore/QSAR modeling approach, we compared 
the crystallographic structure of a co-crystallized ligand 
within the eNOS protein (PDB code: 1RS9)33 with the 
way it maps HypoVI/34/1. Figure 3 compares the 
chemical structure of the co-crystallized ligand and how 
it maps HypoVI/34/1 employing rigid mapping, i.e., 
fitting the ligand's bound state against the pharmacophore 
without conformational adjustments. Clearly, mapping 
the amidic NH of the co-crystallized ligand against the 
HBD feature in HypoVI/34/1 (Figure 3C) corresponds to 
hydrogen bonding interactions tying this NH with the 
peptidic carbonyl oxygen of SER248 (Figure 3B). 
Moreover, fitting the amidic carbonyl oxygen of the co-
crystallized ligand against the HBA feature in 
HypoVI/34/1 (Figure 3C) corresponds to hydrogen 
bonding interactions tying this carbonyl oxygen with one 
of the NHs of the guanidine side chain of ARG252. 
Similarly, mapping the propylene linker of the ligand 
against a Hbic feature in HypoVI/34/1 (Figure 3B) 
corresponds to fitting this moiety into a hydrophobic ring 
composed of the isopropyl side chain of Val 338, and the 
ethylene linkers of the two carboxylic acid side chains of 
the heme ring (Figure 3B) in the co-crystallized complex.  
Additionally, the fitting of the α carbon of phenylalanine 

fragment of the co-crystallized ligand against a second 
hydrophobic feature in HypoVI/34/1 (Figure 3B) 
corresponds to van der Waals' interaction connecting this 
CH with the aromatic ring of TRP449 (Figure 3A). 
Finally, fitting the guanidine nucleus of the co-
crystallized ligand against the PosIon feature in 
HypoVI/34/1 (Figure 3B) seems to correlate nicely with 
electrostatic attraction tying this group with the 
carboxylate side chains of the GLU363 (Figure 3A).  

It remains to be mentioned that HypoVI/34/1 points 
to a limited number of critical interactions required for 
high ligand-eNOS affinity in each of the binding modes. 
In contrast, crystallographic complexes reveal many 
bonding interactions without highlighting critical ones. 
Incidentally, Figures 3 only show interactions 
corresponding to pharmacophoric features while other 
binding interactions were hidden for clarity. 

 
Receiver Operating Characteristic (ROC) Curve 

Analysis 
To further validate the resulting models (both QSAR 

and pharmacophores), we subjected HypoVI/34/1 to 
receiver operating curve (ROC) analysis. In ROC 
analysis, the ability of a particular pharmacophore model 
to correctly classify a list of compounds as actives or 
inactives is indicated by the area under the curve (AUC) 
of the corresponding ROC as well as other parameters, 
namely, overall a rate and overall false negative rate (see 
Receiver Operating Characteristic (ROC) Curve Analysis 
for more details).50 Table 3 and Fig. 4 show the ROC 
results of our QSAR-selected pharmacophore. 
HypoVI/34/1 illustrated excellent overall performances 
with ROC-AUC values exceeding 98%.  

 
CONCLUSIONS 
Appreciation of the pathological roles of eNOS-

derived NO in modulating cancer-related events 
(angiogenesis, apoptosis, cell cycle, invasion, and 
metastasis) stimulated our interest in modeling known 
inhibitors of this target for potential use towards the 
development of new cancer-preventing treatments. The 
pharmacophoric space of eNOS inhibitors was explored 
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via ten diverse sets of inhibitors and using a Catalyst-
Hypogen to identify high quality binding model(s). 
Subsequently, genetic algorithm and multiple linear 
regression analysis were employed to access an optimal 
QSAR model capable of explaining eNOS inhibitors 
bioactivity variation across 151 collected eNOS 
inhibitors. One pharmacophoric model emerged in the 
optimal QSAR equation suggesting the existence of one 
distinct binding mode accessible to ligands within an 
eNOS binding pocket.  

 
EXPERIMENTAL 
Molecular Modeling  
Software and Hardware  
The following software packages were utilized in the 

present research.  
• CS ChemDraw Ultra 6.0,  Cambridge Soft Corp.  

(www.cambridgesoft.com),  USA. 
• Discovery Studio 2.5, Accelrys Inc. 

(www.accelrys.com), USA. 
Pharmacophore and QSAR modeling studies were 

performed using Discovery Studio 2.5 suite from 
Accelrys Inc. (San Diego, California, www.accelrys.com) 
installed on installed on a Core 2 Duo Pentium PC. 

Data Set  
The structures of 151 eNOS inhibitors1-15 (Table A 

under Supplementary Material)28, 53-65 were collected 
from recently published literature.  Even though 
inhibitors used were collected from different articles, 
their in vitro bioactivities were determined by the same 
bioassay methodologies. The bioactivities were expressed 
by their inhibition constant Ki (�M). The logarithm of 
measured Ki (µM) values was used in the three-
dimensional quantitative structure activity analysis (3D-
QSAR) and thus correlating the data linear to the free 
energy change.  

The inhibitors two-dimensional (2D) chemical 
structures were sketched using ChemDraw Ultra and 
saved in MDL-mol file format. Afterward, they were 
imported into the Catalyst, converted into corresponding 
standard 3D structures and energy minimized to the 
closest local minimum using the molecular mechanics 

CHARMm force field implemented in the Catalyst. The 
resulting 3D structures were utilized as starting 
conformers for the Catalyst conformational analysis.  

Conformational Analysis  
The molecular flexibilities of the collected 

compounds were taken into account by considering each 
compound as a collection of conformers representing 
different areas of the conformational space accessible to 
the molecule within a given energy range. Accordingly, 
the conformational space of each inhibitor (1-151, Table 
A under supplementary material) was explored adopting 
the “best conformer generation” option within the 
Catalyst based on the generalized CHARMm force field 
implemented in the program. Default parameters were 
employed in the conformation generation procedure of 
training compounds and screened library (NCI), i.e., a 
conformational ensemble was generated with an energy 
threshold of 20 kcal/mol from the local minimized 
structure at which has the lowest energy level and a 
maximum limit of 250 conformers per molecule.  

 
Pharmacophoric Hypotheses Generation  
All 151 molecules with their associated 

conformational models were regrouped into a 
spreadsheet. The biological data of the inhibitors were 
reported with an “Uncertainty” value of 3, which means 
that the actual bioactivity of a particular inhibitor is 
assumed to be situated somewhere in an interval ranging 
from one-third to three-times the reported bioactivity 
value of that inhibitor. Subsequently, ten structurally 
diverse training subsets  (sets I-X in table B under 
supplementary material) were carefully selected from the 
collection for pharmacophore modeling. Typically, the 
Catalyst requires informative training sets that include at 
least 16 compounds of evenly spread bioactivities over at 
least 3.5 logarithmic cycles. Lesser training lists could 
lead to a chance correlation and thus faulty models.  

The selected training sets were utilized to conduct 64 
modeling runs to explore the pharmacophoric space of 
eNOS inhibitors (Table C under supplementary material). 
The exploration process included altering inter-feature 
spacing parameter (100 and 300 picometers) and the 
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maximum number of allowed features in the resulting 
pharmacophore hypotheses, i.e., they were allowed to 
vary from 4 to 5 or 5 to 5 with and without exclusion 
spheres (Table C under supplementary material). 
Pharmacophore modeling employed the Catalyst 
proceeds through three successive phases: the 
constructive phase, subtractive phase and optimization 
phase.50  

Assessment of the Generated Hypotheses 
When generating hypotheses, the Catalyst attempts to 

minimize a cost function consisting of three terms: 
Weight cost, Error cost and Configuration cost.  

An additional approach to assess the quality of the 
Catalyst-Hypogen pharmacophores is to cross-validate 
them using the Cat-Scramble program implemented in the 
Catalyst. This validation procedure is based on Fisher’s 
randomization test.50 In this validation test, we selected a 
95% confidence level, which instructed the Catalyst to 
generate 19 random spreadsheets by the Cat-Scramble 
command. Subsequently, the Catalyst-Hypogen was 
challenged to use these random spreadsheets to generate 
hypotheses using exactly the same features and 
parameters used in generating the initial unscrambled 
hypotheses. Success in generating pharmacophores of 
comparable cost criteria to those produced by the original 
unscrambled data reduces the confidence in the training 
compounds and the unscrambled original pharmacophore 
models.50, 68 Based on Fisher randomization criteria, only 
620 pharmacophores exceeded the 85% significance 
threshold for subsequent processing (clustering and 
QSAR analyses).  

Clustering of the Generated Pharmacophore 
Hypotheses 

The successful models (620) were clustered into 62 
groups (one representative from close sets of 10 models) 
utilizing the hierarchical average linkage method 
available in the Catalyst. Subsequently, the highest-
ranking representatives, as judged based on their 
significant F-values, were selected to represent their 
corresponding clusters in subsequent QSAR modeling. 
Table 1 shows information about the representative 
pharmacophores including their pharmacophoric features, 

success criteria and differences from corresponding null 
hypotheses. The table also shows the corresponding Cat-
Scramble confidence levels for each representative 
pharmacophore. 

QSAR Modeling   
A subset of 121 compounds from the total list of 

inhibitors (1-151, Table A under supplementary material) 28, 

53-65 was utilized as a training set for QSAR modeling, and 
the remaining 30 molecules (ca. 20% of the dataset) were 
employed as an external test subset for validating the QSAR 
models. The test molecules were selected as follows: the 151 
inhibitors were ranked according to their Ki values, and then 
every fifth compound was selected for the test set starting 
from the high-potency end. This selection considered that 
the test molecules must represent a range of biological 
activities similar to that of the training set. The selected test 
inhibitors were marked with double asterisks in Table A 
under supplementary material. 

The logarithm of measured ligand efficiency heavy 
atom (-log (Ki)/LEHA) values was used in QSAR and 
thus correlating the data linear to the free energy change. 
The chemical structures of the inhibitors were imported 
into the Discovery studio as standard 3D single 
conformer representations in SD format. Subsequently, 
different descriptor groups were calculated for each 
compound. The calculated descriptors included various 
simple and valence connectivity indices, electro-
topological state indices and other molecular descriptors 
(e.g., logarithm of partition coefficient, polarizability, 
dipole moment, molecular volume, molecular weight, 
molecular surface area, etc.).51 The training compounds 
were fitted (using the best-fit option in the Catalyst 
module of the Discovery studio )51 against the 
representative pharmacophores (121 models, Table 1), 
and their fit values were added as additional descriptors. 
The fit value for any compound was obtained 
automatically via equation (5).51  

Genetic function approximation (GFA) was 
employed to search for the best possible QSAR 
regression equation capable of correlating the 
variations in biological activities of the training 
compounds with variations in the generated 
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descriptors, i.e., multiple linear regression modeling 
(MLR). GFA techniques rely on the evolutionary 
operations of ‘‘crossover and mutation’’ to select 
optimal combinations of descriptors (i.e., 
chromosomes) capable of explaining bioactivity 
variation among training compounds from a large pool 
of possible descriptor combinations, i.e., chromosomes 
population. However, to avoid overwhelming GFA-
MLR with a large number of poor descriptor 
populations, we removed lowest-variance descriptors 
(20%) prior to QSAR analysis.  

Each chromosome was associated with a fitness value 
that reflected how good it was when compared to other 
solutions. The fitness function employed herein is based 
on Friedman’s ‘lack-of-fit’ (LOF).51  

Our preliminary diagnostic trials suggested the 
following optimal GFA parameters: explore linear, 
quadratic and spline equations at mating and mutation 
probabilities of 50%, population size = 500, number of 
genetic iterations = 30,000 and lack-of-fit (LOF) 
smoothness parameter = 1.0. However, to determine the 
optimal number of explanatory terms (QSAR 
descriptors), it was decided to scan and evaluate all 
possible QSAR models resulting from 4 to 10 
explanatory terms.  

All QSAR models were validated employing leave 
one-out cross-validation (r2

LOO), adjusted (r2
adj) and 

predictive r2 (r2
PRESS) calculated from the test subsets. The 

predictive r2
PRESS was defined as in equation 2: 

 
r2

PRESS = SD-PRESS/SD ………………………… (2) 
 
Where SD is the sum of the squared deviations between 
the biological activities of the test set and the mean 
activity of the training set molecules, and PRESS is the 
squared deviations between the predicted and actual 
activity values for every molecule in the test set.   

 
Receiver Operating Characteristic (ROC) Curve 

Analysis  
The selected pharmacophore models (i.e., 

HypoVI/34/1) were validated by assessing their abilities 

to selectively capture diverse eNOS active compounds 
from a large testing list of actives and decoys.  

The testing list was prepared as described by Verdonk 
and co-workers.69, 70  Briefly, decoy compounds were 
selected based on three basic one-dimensional (1D) 
properties that allow the assessment of distance (D) 
between two molecules (e.g., i and j): (1) the number of 
hydrogen-bond donors (NumHBD), (2) number of 
hydrogen-bond acceptors (NumHBA) and (3) count of 
nonpolar atoms (NP, defined as the summation of Cl, F, 
Br, I, S and C atoms in a particular molecule). For each 
active compound in the test set, the distance to the nearest 
other active compound was assessed by their Euclidean 
Distance (Eq. (3)):  
 
 
 
                                                                                        (3) 
 
The minimum distances are then averaged over all active 
compounds (Dmin). Subsequently, for each active 
compound in the test set, around 36 decoys were 
randomly chosen from the ZINC database. The decoys 
were selected in such a way that they did not exceed Dmin 
distance from their corresponding active compound.  

To diversify active members in the list, we excluded 
any active compound having zero distance ( ),( jiD ) 
from other active compound(s) in the test set. Active 
testing compounds were defined as those possessing 
eNOS affinities ranging from 0.35 to 700 µM. The test 
set included 22 active compounds and 731 ZINC decoys.  

The test set (753 compounds) was screened by each 
particular pharmacophore employing the "Best flexible 
search" option implemented in the Catalyst, while the 
conformational spaces of the compounds were generated 
employing the "Fast conformation generation option" 
implemented in the Catalyst. Compounds missing one or 
more features were discarded from the hit list. In-silico 
hits were scored employing their fit values as calculated 
by Eq. (D) in the Supplementary Materials. 

The ROC curve analysis describes the sensitivity (Se or 
true positive rate, Eq. (4)) for any possible change in the 

2)(2)(

2)(
),(

jNPiNPjNumHBAiNumHBA
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number of selected compounds (n) as a function of (1-Sp). 
Sp is defined as specificity or true negative rate (Eq. (5)).50  
 

                                                                         …….(4) 
 

 
 

                                                                         …….(5) 
 
 
Where, TP is the number of active compounds captured 
by the virtual screening method (true positives), FN is the 
number of active compounds discarded by the virtual 
screening method, TN is the number of discarded decoys 
(presumably inactives),50 while FP is the number of 
captured decoys (presumably inactive). If all molecules 
scored by a virtual screening (VS) protocol with 
sufficient discriminatory power are ranked according to 
their score (i.e., fit values), starting with the best-scored 
molecule and ending with the molecule that got the 
lowest score, most of the actives will have a higher score 
than the decoys. Since some of the actives will be scored 
lower than decoys, an overlap between the distribution of 
active molecules and decoys will occur, which will lead 
to the prediction of false positives and false negatives. 
The selection of one score value as a threshold strongly 
influences the ratio of actives to decoys and therefore the 
validation of a VS method. The ROC curve method 
avoids the selection of a threshold by considering all Se 
and Sp pairs for each score threshold. 

A ROC curve was plotted by setting the score of the 
active molecule as the first threshold. Afterwards, the 
number of decoys within this cutoff was counted and the 
corresponding Se and Sp pair was calculated.50 This 
calculation was repeated for the active molecule with the 
second highest score and so forth, until the scores of all 
actives were considered as selection thresholds. 

The ROC curve representing ideal distributions, 
where no overlap between the scores of active molecules 
and decoys exists, proceeds from the origin to the upper-
left corner until all the actives are retrieved and Se 
reaches the value of 1. In contrast to that, the ROC curve 

for a set of actives and decoys with randomly distributed 
scores tends towards the Se = 1-Sp line asymptotically 
with increasing number of actives and decoys.50 The 
success of a particular virtual screening workflow can be 
judged from the following criteria (shown in Table 3): 

1) In an optimal ROC curve, the value of the area 
under the ROC curve (AUC)50 of 1 is obtained. However, 
random distributions cause an AUC value of 0.5. Virtual 
screening that performs better than a random 
discrimination of actives and decoys retrieve an AUC 
value between 0.5 and 1, whereas an AUC value lower 
than 0.5 represents the unfavorable case of a virtual 
screening method that has a higher probability to assign 
the best scores to decoys than to actives.  

2)  Overall Accuracy (ACC) describes the 
percentage of correctly classified molecules by the 
screening protocol (Eq. (6)). Testing compounds are 
assigned a binary score value of zero (compound not 
captured) or one (compound captured).50  

   
 
                                                                         …….(6) 
 

where N  is the total number of compounds in the testing 
database, and A is the number of true actives in the 
testing database. 

3)  Overall specificity (SPC) describes the 
percentage of discarded inactives by the particular virtual 
screening workflow. Inactive test compounds are 
assigned a binary score value of zero (compound not 
captured) or one (compound captured) regardless of their 
individual fit values.50  

4)  Overall True Positive Rate (TPR or overall 
sensitivity) describes the fraction percentage of captured 
actives from the total number of actives. Active test 
compounds are assigned a binary score value of zero 
(compound not captured) or one (compound captured) 
regardless of their individual fit values.50  

5)  Overall False Negative Rate (FNR or overall 
percentage of discarded actives) describes the fraction 
percentage of active compounds discarded by the virtual 
screening method. Discarded active test compounds are 

FNTP
TP

ActivesofNumberTotal
ActivesSelectedofNumberSe

+
==

FPTN
TN

InactivesofNumberTotal
InactivesDiscardedofNumberSp

+
==

Sp
N
ASe

N
A

N
TNTPACC .1. ⎟

⎠
⎞

⎜
⎝
⎛ −+=

+
=



Jordan Journal of Pharmaceutical Sciences, Volume 5, No. 3, 2012 

- 229 - 

assigned a binary score value of zero (compound not 
captured) or one (compound captured) regardless to their 
individual fit values.50  

 
In Silico Screening for New eNOS Inhibitors  
The HypoVI/34/1 was employed as 3D search queries 

to screen the NCI 3D flexible structural databases. The 
screening was done employing the "Best Flexible 
Database Search" option implemented within the 
Catalyst. Hits were filtered according to Lipinski's71 and 
Veber's rules72 (Table 4). Remaining hits were fitted 

against the one pharmacophore using the "best fit" option 
within the Catalyst. The fit value with the relevant 
molecular descriptors of each hit was substituted in the 
optimal QSAR equation (1). Table 5 shows active hits 
and their QSAR-predictions.  
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Figure 1: Experimental versus (A) fitted (121 compounds, r2LOO= 0.62), and (B) predicted (30 compounds, r2PRESS= 
0.63) bioactivities calculated from the best QSAR model equation (1). The solid lines are the regression lines for the 
fitted and predicted bioactivities of training and test compounds, respectively, whereas the dotted lines indicate 0.1 

log point error margins. 
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Figure 2: (A) Pharmacophoric features of HypoVI/34/1. HBA as green vectored spheres, HBD as pink vectored 
spheres, Hbic as blue spheres, PosIon as red spheres (B) HypoVI/34/1 fitted against 148 (Ki = 0.35 �M, Table A 

under Supplementary Materials), (C) Chemical structure of 148 
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Figure 3: (A), (B) Co-crystallized ligand of eNOS (PDB code: 1RS9, resolution 2.22 Ǻ), (C) HypoVI/34/1 mapped 
against the co-crystallized ligand of 1RS9  (D) the chemical structure of the co-crystallized ligand of 1RS9. 
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Figure 4: ROC curves of: (A) HypoVI/34/1. 
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Table 1: The performance of best representatives of clustered pharmacophore hypotheses generated for eNOS. 

Training set Hypothesesa 

 

Pharmacophoric 
features in generated 
hypotheses 

Total 
cost 

Cost of 
null 

hypotheses 

Residual 
costb Conf.costc Rd F/statistice Cat. 

scramble% 

HypoI/1/10f Hbic, HBA, 2×HBD 119.15 150.50 31.35 12.94 0.83 0.003 95 

HypoI/3/8 2×Hbic, 2×HBD, PosIon 119.45 150.50 31.05 9.49 0.81 0.001 95 

HypoI/5/1 2×Hbic, HBA, HBD, 8EV 103.74 150.50 46.76 12.94 0.96 21.623 95 

HypoI/5/7 Hbic, HBA, HBD, PosIon,1EV 118.61 150.50 31.89 12.94 0.83 3.346 95 

HypoI/5/8 Hbic, 2×HBA, HBD, 1EV 118.98 150.50 31.52 12.94 0.83 0.261 95 

I 

HypoI/6/1 2×Hbic, HBA, PosIon, 9EV 102.75 150.50 47.75 11.26 0.95 17.132 95 

HypoII/8/4 2×Hbic, 2×PosIon 121.62 157.64 36.02 11.26 0.88 8.262 95 

HypoII/8/8 2×Hbic, HBA, PosIon 122.95 157.64 34.69 11.26 0.86 6.692 95 

HypoII/12/7 Hbic, 2×HBA, HBD, 4EV 120.26 157.64 37.38 11.26 0.89 1.740 95 
HypoII/10/1 2×Hbic, HBA, HBD, PosIon,6EV 113.14 157.64 44.50 9.49 0.93 19.006 95 

HypoII/10/4 2×Hbic, 2×HBD, PosIon 119.23 157.64 38.41 9.49 0.88 11.557 95 

II 

HypoII/14/10 2×Hbic, HBD, PosIon 116.45 157.04 40.59 11.26 0.85 9.740 95 

HypoIII/15/7 2×Hbic, 2×HBD, PosIon 112.37 157.04 44.67 9.49 0.87 12.561 95 

HypoIII/17/1 2×Hbic, HBA, HBD, PosIon, 5EV 104.67 157.04 52.37 12.94 0.96 15.259 95 

HypoIII/17/6 2×Hbic, HBA, PosIon, 6EV 114.15 157.04 42.89 12.94 0.89 12.415 95 

HypoIII/17/10 Hbic, HBA, 2×HBD, 1EV 117.45 157.04 39.59 12.94 0.86 2.922 95 

III 

HypoIII/18/7 2×Hbic, HBA, HBD, 3EV 111.98 157.04 45.07 11.26 0.89 17.270 95 

HypoIV/19/1 Hbic, HBA, 2×HBD 96.83 132.34 35.51 12.80 0.90 1.472 95 

HypoIV/20/2 2×Hbic, HBA, HBD 97.05 132.34 35.30 11.04 0.88 12.777 95 

HypoIV/23/1 Hbic, HBA, HBD, PosIon, 9EV 93.68 132.34 38.66 12.94 0.93 2.962 90 

HypoIV/23/2 Hbic, 2×HBA, HBD, 9EV 94.02 132.34 38.32 12.94 0.93 3.080 95 

HypoIV/23/6 HBA, HBD, 2×PosIon, 3EV 100.17 132.34 32.17 12.94 0.87 1.456 95 

IV 

HypoIV/24/8 2×Hbic, HBA, PosIon, 1EV 99.06 132.34 33.28 11.26 0.86 7.262 95 

HypoV/26/3 2×Hbic, 2×PosIon 97.69 128.63 30.94 11.26 0.92 7.939 95 

HypoIV/27/10 2×Hbic, HBA, 2×PosIon 100.98 128.63 27.65 9.50 0.87 0.358 95 

HypoIV/29/3 Hbic, HBA, 2×HBD, 2EV 99.10 128.63 29.53 12.94 0.92 2.473 95 

HypoIV/29/7 2×Hbic, HBA, HBD, 1EV 99.43 128.63 29.20 12.94 0.92 13.151 95 

HypoIV/30/4 2×Hbic, 2×HBD 96.89 128.63 31.74 11.26 0.93 10.217 95 

V 

HypoIV/30/5 2×Hbic, HBD, PosIon 97.13 128.63 31.51 11.26 0.93 7.788 95 

aHigh ranking representative hypotheses (in their corresponding clusters, see section 4.1.6). bDifference between total cost and the cost of the 

corresponding null hypotheses. cConf.cost, dCorrelation coefficients between pharmacophore/based bioactivity estimates and bioactivities of 

corresponding training compound (subsets in table B under supplementary material). eFisher statistic calculated based on the linear regression between 

the fit values of all collected inhibitors (1/151, table A under supplementary material) against pharmacophore hypothesis (employing the "best fit" option 

and equation (D) and their respective eNOS inhibitory activity (log (1/Ki) values).  fModels names encode for the training sets, run numbers and model 

rank in each run, e.g., HypoI/1/10 encode for the 10rd pharmacophore model generated from training subset I (Table B under Supplementary Materials) in 

run number 1 (Table C under Supplementary Materials). gBolded pharmacophores appeared in the best QSAR equations. 
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Table 1: The performance of best representatives of clustered pharmacophore hypotheses generated for eNOS. 

Training 
set 

Hypothesesa 

 

Pharmacophoric 
features in generated 
hypotheses 

Total 
cost 

Cost of null 
hyptheses 

Resdiual 
costb Conf.costc Rd F/statistice Cat. 

scramble% 

HypoVI/31/3f Hbic, HBA, 2×HBD 112.37 140.45 28.08 12.94 0.89 8.237 95 

HypoVI/32/2 2×Hbic, HBA, HBD 109.86 140.45 30.58 11.26 0.90 11.589 95 

HypoVI/32/6 2×Hbic, 2×PosIon 111.03 140.45 29.42 11.26 0.89 4.239 95 

HypoVI/34/1g 2×Hbic, HBA, HBD, 
PosIon, 9EV 104.87 140.45 35.58 9.50 0.93 21.100 90 

HypoVI/35/1 2×Hbic, HBA, PosIon, 
8EV 105.92 140.45 34.53 12.94 0.96 19.398 95 

VI 

HypoVI/35/10 2×Hbic, 2×HBD 113.32 140.45 27.13 12.94 0.88 12.895 95 

HypoVII/37/5 Hbic, 2×HBA, PosIon 104.84 121.19 16.35 17.68 0.91 0.055 95 

HypoVII/37/6 Hbic, 3×HBA 106.67 121.19 14.52 17.68 0.89 0.000 95 

HypoVII/38/5 Hbic, 2×HBA, HBD 102.12 121.19 19.07 15.64 0.90 1.992 95 

HypoVII/39/1 2×Hbic, 2×HBA, 
PosIon 97.28 121.19 23.91 13.19 0.93 9.794 95 

HypoVII/41/1 Hbic, 2×HBA, HBD 102.82 121.19 18.37 17.68 0.92 0.001 95 

 
VII 

 
 
 
 
 
 
 

VII-10 
 HypoVII/42/3 Hbic, 2×HBA, PosIon 103.33 121.19 17.86 15.64 0.89 0.668 95 

HypoVIII/43/5 2×Hbic, 2×HBA, 
PosIon 103.92 121.19 17.27 13.19 0.86 8.265 95 

HypoVIII/43/9 2×Hbic, HBA, HBD, 
PosIon 104.14 121.19 17.04 13.19 0.85 16.617 95 

HypoVIII/48/4 2×Hbic, 2×HBD, 
PosIon 106.51 141.18 34.67 9.49 0.85 11.112 95 

HypoVIII/49/4 2×Hbic, HBA, HBD, 
PosIon, 5EV 102.03 141.18 39.15 12.94 0.91 23.349 95 

HypoVIII/49/5 2×Hbic, HBA, HBD, 
6EV 99.79 141.18 41.39 12.94 0.94 10.063 95 

HypoVIII/50/2 2×Hbic, HBA, PosIon, 
8EV 94.74 141.18 46.44 11.26 0.96 0.010 95 

HypoVIII/50/6 2×Hbic, 2×HBD 101.85 141.18 39.33 11.26 0.91 9.250 95 

 
VIII 

 
 

HypoVIII/50/7 2×Hbic, HBA, HBD, 
5EV 102.57 141.18 38.62 11.26 0.90 12.045 95 

HypoXI/52/9 Hbic, HBA, HBD, 
PosIon 104.06 126.20 22.14 11.26 0.85 0.162 95 

HypoXI/54/1 2×Hbic, HBA, HBD, 
PosIon, 7EV 93.63 126.20 32.56 9.50 0.95 2.982 90 

XI 

HypoXI/54/6 2×Hbic, 2×HBA, 
PosIon, 7EV 106.76 126.20 19.44 9.50 0.79 4.412 95 
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HypoXI/54/8 2×Hbic, HBA, 
2×PosIon, 1EV 108.90 126.20 17.29 9.50 0.77 0.339 95 

HypoXI/55/8 Hbic, HBA, 2×HBD, 
5EV 103.25 126.20 22.95 12.94 0.87 4.144 95 

HypoX/57/1 Hbic, 2×HBA, HBD 111.38 125.98 14.60 17.81 0.90 0.524 95 

HypoX/57/5 Hbic, HBA, 2×HBD 112.78 125.98 13.20 17.81 0.88 1.215 95 

HypoX/58/1 Hbic, 2×HBA, HBD 108.44 125.98 17.54 15.65 0.91 2.097 95 

HypoX/58/3 2×Hbic, HBA, HBD 108.75 125.98 17.23 15.65 0.90 4.943 95 

HypoX/1/10 2×Hbic, 2×HBA 114.54 125.98 11.44 17.81 0.85 1.010 95 

HypoX/62/7 Hbic, 2×HBA, PosIon 111.55 125.98 14.43 15.65 0.87 0.038 95 

HypoX/63/4 2×Hbic, 2×HBA, 
PosIon 107.26 125.98 18.72 14.12 0.91 27.346 95 

X 

HypoX/63/5 2×Hbic, HBA, HBD, 
PosIon 110.12 125.98 15.86 14.12 0.87 19.781 95 

aHigh ranking representative hypotheses (in their corresponding clusters, see Clustering of the Generated Pharmacophore Hypotheses 
bDifference between total cost and the cost of the corresponding null hypotheses. cConf.cost, dCorrelation coefficients between pharmacophore/based bioactivity 

estimates and bioactivities of corresponding training compound (subsets in Table B under Supplementary Material). eFisher statistic calculated based on the linear 

regression between the fit values of all collected inhibitors (1/151, Table A under Supplementary Material) against pharmacophore hypothesis (employing the "best 

fit" option and equation (D) and their respective eNOS inhibitory activity (log (1/Ki) values).  fModels’ names encode for the training sets, run numbers and model 

rank in each run, e.g., HypoI/1/10 encode for the 10rd pharmacophore model generated from training subset I (Table B under Supplementary Materials) in run 

number 1 (Table C under Supplementary Materials). gBolded pharmacophores appeared in the best QSAR equations. 

 

Table 2: Pharmacophoric features, corresponding tolerances and 3D coordinates (X, Y, Z) of optimal eNOS based 
pharmacophore models. 

Model a definitions Chemical Features 

  HBAc HBDd Hbice Hbic  PosIons f 
Weights  2.00566 2.00566 2.00566 2.00566 2.00566

Tolerancesb  1.60 2.20 1.60 2.20 1.60 1.60 1.60

Coordinates X 1.68- 0.15-  0.18 1.46 3.02-  1.61 5.33

 Y 0.48 2.10 0.88-  1.80 2.69-  0.64-  0.35-

Hypo34/1a 

 Z 2.16- 4.14- 2.51- -3.17 1.15 1.30 1.44
aPharmacophoric hypothesis shown in Figure 2 and Figures 3 . bTolerances: refer to the radius of feature spheres (Å).c HBA: Hydrogen Bond Acceptor feature. 
dHBD: Hydrogen Bond Donor feature, Hbice: Hydrophobic feature. f PosIons: Positive ionizabile. fHBA: Hydrogen Bond Acceptor feature. gNumber of exclusion 
spheres in HypoVI/34/1= 10 of 1.2 Å tolerance, at the following X,Y, Z coordinates: ( 1.42 , -2.56 , -3.02 ), ( -2.17 , -2.13 , 4.23 ), ( 1.58 , 3.12 , -2.39 ), ( 5.48 , 
5.15 , -2.37 ),  ( -6.77 , 0.40 , -2.10 ), ( 10.51 , 2.20 , 2.60 ), ( 2.58 , -5.72 , 2.09 ), ( -0.55 , -5.00 , -1.88 ), ( -2.82 , 3.85 , 3.12). 

 
Table 3: Performance of QSAR-selected pharmacophores as 3D search queries. 

Pharmacophore Model ROCa- AUCb ACCc SPCd TPRe FNRf 

HypoVI/34/1 0.98 0.96 0.99 0.27 0.01 

aROC: Receiver operating characteristic. 
bAUC: Area under the curve. 
cACC: Overall accuracy. 
dSPC: Overall specificity. 
e TPR: Overall true positive rate. f FNR: Overall false negative rate. 
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Table 4: The number of captured compounds by each pharmacophore model. 

Pharmacophore models 
 

3D Database Post screening filteringb
HypoVI/34/1 

Before 4100  
NCIa 

After 1351 

 
Table 5: High-ranking hit molecules with their fit values against HypoVI/34/1 and their corresponding QSAR 

estimates from equation (1). 

Fit valuesb 

No.a Name Structure 

HypoVI/34/1 

QSAR 
Predictionsc 

Ki (µM)  

152  NCI0225379 

O

N

N N

Cl
N

Cl

H
 

8.16 0.50 

153 NCI0382039 

N

N

N

NNN

N

H

H

H

H

H

HH

H

H

 

7.47 1.00 

154 NCI0231540 

N

N

Cl

NCl N

N

H  

7.32 0.66 

155 NCI0382943 
N

O

NN

O

NN
N

H

H H

H

 

6.98 0.85 
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156 NCI0602251 

O

N

N

N

N N

H

H

H

 

6.96 1.00 

aCompound numbers. 
bBest- fit values calculated  by equation (D) in section SM-1 under Supplementary Materials. 
cPredictions based on optimal QSAR model (1). 
 

Table 5: High-ranking hit molecules with their fit values against HypoVI/34/1 and their corresponding QSAR 
estimates from equation (1). 

Fit valuesb 
No.a Name Structure 

HypoVI/34/1 

QSAR 
Predictionsc 

Ki (µM)  

170 NCI0014523 

NH2HN

S
S

NH

H2N  

5.62 1.00 

171 NCI0665292 

N

NH

O

N
O

F

 

6.56 0.02 

172 NCI0349071 

NN
H

N

O

 

6.40 1.24 
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173 NCI0507481 

HN

NH HN

S

NHS

 

6.23 1.24 

174 NCI0528635 

NH2
H
N

H
N

N+
N

NH2

NH
N+

N

 

8.16 0.90 

aCompound numbers. 
bBest- fit values calculated  by equation (D) in section SM-1 under Supplementary Materials. 
cPredictions based on optimal QSAR model (1). 
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 والخصائص الدوائية لمثبطات النيتريك سينسينر والتأكيد اللاحق في السيليكون والبحث عن QSARنموذج 

  العقائدية الجديدة
  

  غدير اسعيفان وهبة العجل ومعتصم حوامدة
 

  .كلية الصيدلة، الجامعة الأردنية
  

  ملخـص
 

 دور  (eNOS)يك الموجود في الخلايا الطلائية  والأبحاث العلمية أن الإنزيم المصنع لأوكسيد النيترالدراساتأثبتت 
. مما أثار المحاولات المستمرة لاكتشاف مثبطات جديدة لهذا الإنزيموالسرطانات  الالتهابات المزمنةهام في حدوث  

 اكتشاف وتحسين مثبطات جديدة لهذا الإنزيم أمر شديد الضرورة، في مجالولتحقيق هذه الغاية يعتبر البحث العلمي 
الإنزيم المصنع لأوكسيد  مركبا من المركبات المعروف تأثيرها على 151 قمنا باستكشاف الفضاء التكويني للذا

 مجموعات متنوعة لتحديد 10 بحيث قمنا بتقسيم هذه المركبات إلى (eNOS)النيتريك الموجود في الخلايا الطلائية 
  .علية المركبات المثبطة لهذا الإنزيم ذي الجودة الأعلى في وصف فا (pharmacophore)الشكل الفضائي

 وطريقة التحليل بواسطة الانحدار الخطي genetic algorithmبعد ذلك، تم توظيف طريقة الخوارزمية الجينية 
 والواصفات الفيزيائية ثنائية pharmacophoric modelsالمتعدد لتحديد أفضل مزيج من نماذج الوصف الفضائي 

 إلى المعادلة الكمية الأمثل لوصف العلاقة بين فعالية المركبات وبين تركيبها الكيميائي البعد القادرة على الوصول
)QSAR (وقد كانت المعادلة الأمثل التي تمكنت من وصف هذه العلاقة تملك المواصفات التالية:  

(r2
121 = 0.77, F = 63.5, r2

LOO = 0.62, r2
PRESS = 0.63) 

وقد نشأ . ظهر في المعادلة الكمية الأفضلواحدا فقط  (pharmacophore)  ضائياومن المثير للاهتمام، أن شكلا ف
أدلة قاطعة على صحة هذا ) ROC(عن مقارنة أماكن ارتباط المركبات الفعالة بالإنزيم وعن تحليل رسمات منحنيات 

ف العلاقة بين فعالية وبعد ذلك استخدمنا الشكل الفضائي الناتج والمعادلة الكمية الأمثل لوص. النموذج الوصفي
وإيجاد ) NCI(لفحص قائمة مركبات المعهد الأمريكي للسرطان ) QSAR(المركبات وبين تركيبها الكيميائي 

 .مركبات جديدة فعالة وقادرة على تثبيط هذا الإنزيم

 .الخلايا الطلائية، انزيم المصنع لأوكسيد النيتريك: الكلمـات الدالـة
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