July $8^{\text {th }} 2011$

$P_{17}=\operatorname{sok}\left(P\left|A, 10^{\circ}\right|, S\right)$
$P=P_{17}^{F}(P \mid f, 10 \%, 17)$
$=S 0^{k}(P \mid A, 10 \%, S)(P \mid f, 101.1,7)$

$$
=50^{k}\left(\frac{1}{(1+.10)^{5}}\right)
$$

$$
F=P(1+i)^{v}
$$

When your investment will Publ

$$
\begin{gathered}
F=2 P \\
2 P^{\prime}=P(1+i)^{N} \\
(1+i)^{N}=2
\end{gathered}
$$

Rule of 72 is approx.

$$
i=\frac{72}{N} \text { or } N=\frac{12}{L_{i}}
$$

where L us not dead

$$
\begin{aligned}
& N=10 y n \text { to Dole } \\
& l=\frac{72}{10}=7.2 \% \\
& L=10 \% N=?+\text { Double } \\
& N=72 / 10=7.2 \mathrm{yRS}
\end{aligned}
$$

$$
\begin{aligned}
& 10 K=\frac{6 q^{2}}{1} 1 \\
& \begin{array}{c}
(P / G, i, N)=\quad . \quad 6.862 \\
10 \% 5
\end{array} \\
& P=10^{K}(6.862)=68620 \\
& \stackrel{6}{19}=P^{\rho} \quad P / 6 \\
& \stackrel{6}{\sqrt[6]{7}}=A_{1}^{A} \text { A/6 } \\
& A=G\left(A \not G,(0)^{\prime}, 5\right)=10^{K} \times 1.8101 \\
& =18101.0
\end{aligned}
$$

$$
\begin{aligned}
& P=2^{k}\left(P / 1,8^{0} 1,4\right)+1^{k}\left(P / 6,8^{\circ}!4\right) \\
& A=2^{K}+1^{K}\left(A, A_{6}^{\prime}, 4\right) \\
& \left.F=\imath^{*}(f \mid A, 8], y^{\prime}\right)+1^{*}\left(f / 6, \gamma^{\prime},, 4\right)
\end{aligned}
$$

Nominal ds Effectre

yearly $F=1000(1+.12)^{\prime}=1120 \frac{1120-1000}{1000}=(2)$,
$\operatorname{Sem} 1 A \cdot F=1000\left(1+\frac{.12}{2}\right)^{2}=1123.60 \quad$ celf $=\frac{1123.60 \cdot 1000}{1000}=12.35 \%$
Q 隹• $F=1001\left(1+\frac{.12}{4}\right)^{4}=1125.50 \quad\left(e f 1 \cdot \frac{-1125.50-1000}{1000}=12.55 \%\right.$
Morthl $F=10 \mathrm{ov}\left(1+\frac{.12}{12}\right)^{12}=1126.8 \quad 1-11=\frac{1126.8-1000}{100}=12.68^{\circ} \%$
whly $F=1000\left(1+\frac{.12}{\sqrt{2}}\right)^{52}=1127.3 \quad\left(z 1=\frac{-1127.3-1000}{100}=12.73^{6} \%\right.$
Cont. Compondus

$$
\begin{aligned}
& F=1000\left(e^{r N}\right)^{\text {whern }} \begin{array}{l}
\text { Crat Comp Rate }
\end{array} \\
& F=1000\left(e^{(.12)(1)}\right)=1000(1.127)=1127 \\
& \left.C=\frac{11275-1000}{16 \mathrm{~N}}=12.75 \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& F=p\left(1+\frac{i}{M}\right)^{M} \\
& \text { Left }=\frac{F-p}{p}=\frac{p\left(1+\frac{i}{m}\right)^{M}-p l}{p}= \\
&=\left(1+\frac{i}{m}\right)^{M}-1
\end{aligned}
$$

$12^{\circ} \%$ comp $\theta T V_{2} L_{n}$

$$
\begin{aligned}
& \operatorname{cof}_{\mathrm{g}}=\left(1+\frac{12}{4} 4-1\right. \\
& =12.55 \% \\
& \operatorname{lam}_{6 \text { mon }}=\left(1+\left(\frac{12}{4}\right)^{-1}-1\right. \\
& \frac{.06}{2}=6.09^{\circ} \%
\end{aligned}
$$

With an interest rate of 8% compounded semiannually, the value of a $\$ 1,000$ investment after 5 years is near:

- 1000 ($1 . .0710(60$

$F=1000(1+?)^{5}$

Maintenance costs
of a machine are
expected to be zero
for the first 4 years,
$\$ 2000$ in year 5,
$\$ 2500$ in year 6 , and
amounts increasing
by $\$ 500$ each year
through year 10. At
an interest rate of
8\% per year, the
value of n to use in
the P / G equation for this problem:

$$
\begin{aligned}
F & \left.=1000\left(1+c_{21}\right)\right)^{5} \\
& =1000\left(1 /+\left(1+\frac{.08}{12}\right)^{12}-7\right)^{5} \\
& =1000\left(1+\frac{.08}{12}\right)^{5 \times 12} \\
& \left.=1000\left(1+\frac{.88}{12}\right)^{68} e^{102}\right) 2
\end{aligned}
$$

For an interest rate of 2% per quarter, compounded continuously, the effective

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { semiannual interest rate is: } \\
F)^{r} e^{R}=12 \% \\
F=1000 e^{-12(1)}=1000(1.127) \\
(F(P, r, n)=1.127 \\
(\mathbb{N})-1.127-1=.127
\end{array} \\
& (12)
\end{aligned}
$$

81. Ley $4 \% \sec n$

For an interest rate of 2% per quarter, compounded continuously, the effective semiannual interest rate is:
monthly

$$
\begin{aligned}
& L_{\text {af }}=\left(1+\frac{1}{m}\right)^{m}-1 \\
& \operatorname{loth}_{\in \lim ^{n}}=\left(1+\frac{02}{3}\right)^{3}-1 \\
& \operatorname{sem} \|_{1}=\left(1+\frac{.02}{3}\right)^{6}-1 \\
& \operatorname{La}_{\operatorname{anad}}=\left(1+\frac{3}{3}\right)^{12}-1 \\
& \begin{array}{l}
\text { Led } \\
\text { ale } \\
\left.=(1+1+1+)^{3}\right)^{4}-1
\end{array} \\
& =\left(x+\left(1+\frac{12}{3}\right)^{3}=x\right)^{4}-1 \\
& \left.=\left(1+\frac{. d 2}{3}\right)^{12}-1\right)
\end{aligned}
$$

