
Networks and Internet Programming (0907522)

CHAPTER 2

Java Overview

Instructor: Dr. Khalid A. Darabkh

Objectives

The objectives of this chapter are:
To discuss the classes present in the java.awt package

To understand the inheritance hierarchy of the AWT

To outline the basic structure of GUIs

To show how to add components to containers

To understand how to use Layout Managers

To understand how to use Event Handling

To understand basic graphics processing under the AWT

AWT (Abstract Windowing Toolkit)

The AWT is roughly broken into four categories
Components and Containers

Layout Managers

Event Handling

Graphics

Many AWT components have been replaced by Swing
components
It is generally not considered a good idea to mix
Swing components and AWT components. Choose to
use one or the other.

Running Java files
There are 3 different ways to run a java executable:

As a stand-alone program that can be invoked from the command
line. This is termed an application.

As a program embedded in a web page to be run when the page is
browsed. This is termed an applet.

As a program that is invoked on demand on a server
system and that runs in the context of a web server. This
is termed a servlet.

4

5

AWT Revisited

Present in all Java implementations
Described in most Java textbooks
Adequate for many applications
Uses the controls defined by your OS

therefore it's “least common denominator”

Difficult to build an attractive GUI
import java.awt.*;
import java.awt.event.*;

6

Swing

Same concepts as AWT
Doesn’t work in ancient Java implementations
(Java 1.1 and earlier)
Many more controls, and they are more flexible

Some controls, but not all, are a lot more complicated

Gives a choice of “look and feel” packages
Much easier to build an attractive GUI
import javax.swing.*;

7

Swing vs. AWT

Swing is bigger, slower, and more complicated
But not as slow as it used to be

Swing is more flexible and better looking
Swing and AWT are incompatible--you can use
either, but you can’t mix them

Actually, you can, but it’s tricky and not worth doing

Learning the AWT is a good start on learning Swing
Many of the most common controls are just renamed

AWT: Button b = new Button ("OK");
Swing: JButton b = new JButton("OK");

8

To build a GUI...

Make somewhere to display things—usually a
Frame or Dialog (for an application), or an Applet
Create some Components, such as buttons, text
areas, panels, etc.
Add your Components to your display area
Arrange, or lay out, your Components
Attach Listeners to your Components

Interacting with a Component causes an Event to occur
A Listener gets a message when an interesting event
occurs, and executes some code to deal with it

9

Containers and Components

The job of a Container is to hold and display
Components

Some common subclasses of Component are Button,
Checkbox, Label, Scrollbar, TextField, and
TextArea

A Container is also a Component
This allows Containers to be nested

Some Container subclasses are Panel (and Applet),
Window, and Frame

Component
Component is the superclass of most of the displayable
classes defined within the AWT. Note: it is abstract.
MenuComponent is another class which is similar to
Component except it is the superclass for all GUI items
which can be displayed within a drop-down menu.
The Component class defines data and methods which
are relevant to all Components

paint(Graphics g)
setBounds
setSize
setLocation
setFont
setEnabled
setVisible
setForeground -- colour
setBackground -- colour

Container
Container is a subclass of Component. (ie. All containers
are themselves, Components)
Containers contain components
For a component to be placed on the screen, it must be
placed within a Container
The Container class defined all the data and methods
necessary for managing groups of Components

add
remove
Validate
invalidate
setLayout

12

An Applet is Panel is a Container

java.lang.Object
|
+----java.awt.Component

|
+----java.awt.Container

|
+----java.awt.Panel

|
+----java.applet.Applet

…so you can display things in an Applet

AWT Class Hierarchy

Button

Checkbox

Choice

Label

List

Component

Container FrameWindow

TextArea

TextFieldTextComponent

Note: There are more classes, however,
these are what are covered in this chapter

AppletPanel

14

Example: A "Life" applet

Container (Applet)

Containers (Panels)

Component (Canvas)

Components (Buttons)

Components (Labels)

Components (TextFields)

15

Applets

An application has a
public static void main(String args[]) method, but

an Applet usually does not
An Applet's main method is in the Browser
To write an Applet, you extend Applet and override
some of its methods
The most important methods are init(), start(), and
paint(Graphics g)

16

To create an applet

public class MyApplet extends Applet { … }
this is the only way to make an Applet

You can add components to the applet
The best place to add components is in init()
You can paint directly on the applet, but…
…it’s better to paint on a contained component
Do all painting from paint(Graphics g)

17

Some types of components

Label Button

Button

Checkbox

Choice

List

Scrollbar

TextField TextArea

CheckboxGroupCheckbox

18

Creating components

Label lab = new Label ("Hi, Dave!");
Button but = new Button ("Click me!");
Checkbox toggle = new Checkbox ("toggle");
TextField txt =

new TextField ("Initial text.", 20);
Scrollbar scrolly = new Scrollbar

(Scrollbar.HORIZONTAL, initialValue,
bubbleSize, minValue, maxValue);

19

Adding components to the Applet

class MyApplet extends Applet {
public void init () {

add (lab); // same as this.add(lab)
add (but);
add (toggle);
add (txt);
add (scrolly);
...

20

Creating a Frame

When you create an Applet, you get a Panel “for free”
When you write a GUI for an application, you need to
create and use a Frame:

Frame frame = new Frame();
frame.setTitle("My Frame");
frame.setSize(300, 200); // width, height
... add components ...
frame.setVisible(true);

Or:
class MyClass extends Frame {

...
setTitle("My Frame"); // in some instance method

21

Arranging components

Every Container has a layout manager
The default layout for a Panel is FlowLayout
An Applet is a Panel
Therefore, the default layout for a Applet is FlowLayout
You could set it explicitly with

setLayout (new FlowLayout());
You could change it to some other layout manager
The default layout for a frame is BorderLayout.

22

FlowLayout

Use add(component); to add to a component when
using a FlowLayout
Components are added left-to-right
If no room, a new row is started
Exact layout depends on size of Applet
Components are made as small as possible
FlowLayout is convenient but often ugly

23

Complete example: FlowLayout

import java.awt.*;
import java.applet.*;

public class FlowLayoutExample extends Applet {
public void init () {
setLayout (new FlowLayout ()); // default
add (new Button ("One"));
add (new Button ("Two"));
add (new Button ("Three"));
add (new Button ("Four"));
add (new Button ("Five"));
add (new Button ("Six"));

}
}

24

BorderLayout

At most five components can be
added
If you want more components, add a
Panel, then add components to it.
setLayout (new BorderLayout());

add (new Button("NORTH"), BorderLayout.NORTH);

25

BorderLayout with five Buttons

public void init() {
setLayout (new BorderLayout ());
add (new Button ("NORTH"), BorderLayout.NORTH);
add (new Button ("SOUTH"), BorderLayout.SOUTH);
add (new Button ("EAST"), BorderLayout.EAST);
add (new Button ("WEST"), BorderLayout.WEST);
add (new Button ("CENTER"), BorderLayout.CENTER);

}

26

Complete example: BorderLayout

import java.awt.*;
import java.applet.*;

public class BorderLayoutExample extends Applet {
public void init () {

setLayout (new BorderLayout());
add(new Button("One"), BorderLayout.NORTH);
add(new Button("Two"), BorderLayout.WEST);
add(new Button("Three"), BorderLayout.CENTER);
add(new Button("Four"), BorderLayout.EAST);
add(new Button("Five"), BorderLayout.SOUTH);
add(new Button("Six"), BorderLayout.SOUTH);

}
}

27

Using a Panel

Panel p = new Panel();
add (p, BorderLayout.SOUTH);
p.add (new Button ("Button 1"));
p.add (new Button ("Button 2"));

28

GridLayout

The GridLayout manager
divides the container up into
a given number of rows and
columns:

new GridLayout(rows, columns)

All sections of the grid are equally sized and as large as
possible

29

Complete example: GridLayout

import java.awt.*;
import java.applet.*;

public class GridLayoutExample extends Applet {
public void init () {
setLayout(new GridLayout(2, 3));
add(new Button("One"));
add(new Button("Two"));
add(new Button("Three"));
add(new Button("Four"));
add(new Button("Five"));

}
}

What if I don t want a LayoutManager?

30

LayoutManagers have proved to be difficult and frustrating
to deal with.
The LayoutManager can be removed from a Container by
invoking its setLayout method with a null parameter.

Panel aPanel = new Panel();
aPanel.setLayout(null);

31

Making components active

Most components already appear to do something--
buttons click, text appears
To associate an action with a component, attach a
listener to it
Components send events, listeners listen for events
Different components may send different events, and
require different listeners

32

Listeners

Listeners are interfaces, not classes
class MyButtonListener implements

ActionListener {

An interface is a group of methods that must be
supplied
When you say implements, you are promising to
supply those methods

33

Writing a Listener

For a Button, you need an ActionListener

b1.addActionListener
(new MyButtonListener ());

An ActionListener must have an
actionPerformed(ActionEvent) method

public void actionPerformed(ActionEvent e) {
…

}

34

MyButtonListener

public void init () {
...
b1.addActionListener (new MyButtonListener ());

}

class MyButtonListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
showStatus ("Ouch!");

}
}

35

Listeners for TextFields

An ActionListener listens for someone hitting the
Enter key
An ActionListener requires this method:

public void actionPerformed (ActionEvent e)

You can use getText() to get the text

A TextListener listens for any and all keys
A TextListener requires this method:

public void textValueChanged(TextEvent e)

Event Sources and Their Listeners

Dialog - WindowListener
Frame - WindowListener
Button - ActionListener
Choice - ItemListener
Checkbox – ItemListener
List - ItemListener, ActionListener (when an item is
double clicked)
Scrollbar - AdjustmentListener
TextField - ActionListener, TextListener
TextArea - TextListener

36

Simple AWT Example
import java.awt.*;
import java.awt.event.*;
public class SimpleAWT extends java.applet.Applet
implements ActionListener, ItemListener {
private Button button = new Button("Push Me!");
private Checkbox checkbox = new Checkbox("Check Me!");
private Choice choice = new Choice();
private Label label = new Label("Pick something!");
public void init() {
button.addActionListener(this);
checkbox.addItemListener(this);
choice.addItemListener(this);
// An Applet is a Container because it extends Panel.
setLayout(new BorderLayout());
choice.addItem("Red");
choice.addItem("Green");
choice.addItem("Blue");
Panel panel = new Panel();
panel.add(button);
panel.add(checkbox);
panel.add(choice);
add(label, "Center");
add(panel, "South");
}

37

Simple AWT Example Cont.
public void actionPerformed(ActionEvent e) {
if (e.getSource() == button) {
label.setText("The Button was pushed.");
}
}
public void itemStateChanged(ItemEvent e) {
if (e.getSource() == checkbox) {
label.setText("The Checkbox is now " +
checkbox.getState() + ".");
} else if (e.getSource() == choice) {
label.setText(choice.getSelectedItem() + “ was selected.”);
}
}
}

38

39

AWT and Swing
AWT Buttons vs. Swing JButtons:

A Button is a Component
A JButton is an AbstractButton, which is a JComponent, which is a
Container, which is a Component

Containers:
Swing uses AWT Containers

AWT Frames vs. Swing JFrames:
A Frame is a Window is a Container is a Component
A JFrame is a Frame, etc.

Layout managers:
Swing uses the AWT layout managers, plus a couple of its own

Listeners:
Swing uses many of the AWT listeners, plus a couple of its own

Bottom line: Not only is there a lot of similarity between AWT and Swing,
but Swing actually uses much of the AWT

Graphics

It is possible to draw lines and various shapes within a
Panel under the AWT.
Each Component contains a Graphics object which defines
a Graphics Context which can be obtained by a call to
getGraphics().
Common methods used in Graphics include:

drawLine
drawOval
drawRect
drawRoundRect
drawArc

 fillArc
 fillOval
 fillRect
 fillRoundRect
 setColor
 setFont
 drawImage
 drawString

To start, here’s a basic applet that
demonstrates Java graphics using AWT:
import java.awt.*;
import java.applet.Applet;

public class BasicGraphics extends Applet {
public void paint(Graphics g) {

g.setColor(Color.red);
g.fillRect(10, 20, 40, 40);

} // end paint()
} // end class BasicGraphics

Try to compile this
code and run it as
an applet.

What do you see?

Java Graphics

import java.awt.*;
import java.applet.Applet;

public class BasicGraphics extends
Applet {

public void paint(Graphics g) {
g.setColor(Color.red);
g.fillRect(10, 20, 40, 40);

} // end paint()
} // end class BasicGraphics

The first lines are
import statements,
to load the AWT
and Applet
libraries.

If you were
making a Swing
version, you
would load Swing
libraries.

import java.awt.*;
import java.applet.Applet;

public class BasicGraphics extends
Applet {

public void paint(Graphics g) {
g.setColor(Color.red);
g.fillRect(10, 20, 40, 40);

} // end paint()
} // end class BasicGraphics

Our class is called
BasicGraphics,
and it extends
Applet to inherit
Applet properties.

import java.awt.*;
import java.applet.Applet;

public class BasicGraphics extends Applet {
public void paint(Graphics g) {

g.setColor(Color.red);
g.fillRect(10, 20, 40, 40);

} // end paint()
} // end class BasicGraphics

Inside the applet, we
have just one method:
paint()

(Remember from
Applets that other
methods are optional.)

It has one parameter,
called the “abstract
Graphics object”, and
we call it “g”.

Get used to this, you
need to tell paint()
what to paint on!

import java.awt.*;
import java.applet.Applet;

public class BasicGraphics extends Applet {
public void paint(Graphics g) {

g.setColor(Color.red);
g.fillRect(10, 20, 40, 40);

} // end paint()
} // end class BasicGraphics

paint() has two methods
inside of it: setColor and
fillRect

g.setColor(Color.red); is
the command to color
whatever graphic
“thing” we have “red”.

The computer still
doesn’t know what
Graphic “thing” g is
going to be!

import java.awt.*;
import java.applet.Applet;

public class BasicGraphics extends Applet {
public void paint(Graphics g) {

g.setColor(Color.red);
g.fillRect(10, 20, 40, 40);

} // end paint()
} // end class BasicGraphics

g.fillRect(10, 20, 40, 40)
tells the applet to make g
into a “fillRect”, which
is a “filled rectangle”.

10 is the starting x-
position in the applet,

20 is the starting y-
position in the applet

40 is the width and the
other 40 is the height.

Remember what color
will fill it? Red!

47

Summary I: Building a GUI

Create a container, such as Frame or Applet
Choose a layout manager
Create more complex layouts by adding Panels; each
Panel can have its own layout manager
Create other components and add them to whichever
Panels you like

48

Summary II: Building a GUI

For each active component, look up what kind of
Listeners it can have
Create (implement) the Listeners

often there is one Listener for each active component
Active components can share the same Listener

For each Listener you implement, supply the methods
that it requires
For Applets, write the necessary HTML

49

Vocabulary
AWT – The Abstract Window Toolkit provides basic graphics
tools (tools for putting information on the screen)
Swing – A much better set of graphics tools
Container – a graphic element that can hold other graphic
elements (and is itself a Component)
Component – a graphic element (such as a Button or a
TextArea) provided by a graphics toolkit
listener – A piece of code that is activated when a particular kind
of event occurs
layout manager – An object whose job it is to arrange
Components in a Container

	��Networks and Internet Programming (0907522)��CHAPTER 2��Java Overview
	Slide Number 2
	Slide Number 3
	Running Java files
	AWT Revisited
	Swing
	Swing vs. AWT
	To build a GUI...
	Containers and Components
	Slide Number 10
	Slide Number 11
	An Applet is Panel is a Container
	Slide Number 13
	Example: A "Life" applet
	Applets
	To create an applet
	Some types of components
	Creating components
	Adding components to the Applet
	Creating a Frame
	Arranging components
	FlowLayout
	Complete example: FlowLayout
	BorderLayout
	BorderLayout with five Buttons
	Complete example: BorderLayout
	Using a Panel
	GridLayout
	Complete example: GridLayout
	Slide Number 30
	Making components active
	Listeners
	Writing a Listener
	MyButtonListener
	Listeners for TextFields
	Event Sources and Their Listeners
	Simple AWT Example
	Simple AWT Example Cont.
	AWT and Swing
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Summary I: Building a GUI
	Summary II: Building a GUI
	Vocabulary

