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Groundwater Analysis
It is not feasible (or sensible) to attempt to 

ll ibl tit t t imeasure all possible constituents present in 
groundwater's.
A “routine” analysis involves measuring a 
standard set of constituents.
The “routine” analysis forms the basis for 

i th it bilit f th t f h
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assessing the suitability of the water for human 
consumption or various agricultural and 
industrial uses.
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Major Constituents (> 5 mg/L)

Calcium pHCalcium
Magnesium
Sodium

Bicarbonate

pH
Alkalinity
TDS
Conductivity
Total Hardness
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Chloride
Sulphate Silicon

Carbonic Acid

Other Reported Results
pH is routinely recorded that measures the hydrogen ion 
concentration (-log[H+]).
Conductivity (electrical) is routinely measured in μS/mConductivity (electrical) is routinely measured in μS/m 
(TDS ≈ 0.66 Ec).
TDS is the total dissolved solids measured as the residue 
on evaporation.
Total alkalinity (expressed as mg/L CaCO3) measures 
the acid-neutralizing capacity of a water sample. It is an 
aggregate property, primarily due to the carbonate, 
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gg g p p y, p y ,
bicarbonate, and hydroxide content.
Total hardness (expressed as mg/L CaCO3) is another 
aggregate property of a water sample. Hardness 
measures the concentration of multivalent cations, 
particularly calcium and magnesium. 
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Minor Constituents (0.01 to 10 
mg/L)

Potassium Carbon Dioxide
Iron 
Ammonium

Carbonate
Fl id

Oxygen

Boron
St ti
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Fluoride
Bromide
Nitrate/Nitrite

Strontium

Trace Constituents ( < 100 μg/L)

Li 3
Be 4

Ru 44
Ag 47

• Zn 30
• Ga 31

• W 74
• Pt 78Be 4

Al 13
Sc 21
Ti 22
Cr 24
Mn 25
Co 27

Ag 47
Cd 48
In 49
Sn 50
Sb 51
Cs 55
Ba 56

Ga 31
• Ge 32
• As 33
• Se 34
• Rb 37
• Yt 39

Zr 40

• Au 79
• Tl 81
• Pb 82
• Bi 83
• Ra 88
• Th 90
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Co 27
Ni 28
Cu 29

Ba 56
La 57
Ce 58

• Zr 40
• Nb 41
• Mo 42

• Th 90
• U 92
• Iodide
• Phosphate
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Organic Constituents
Humic acid Acetate
Fulvic Acid
Carbohydrates
Amino Acids
Tannins
Lignins

Propionate
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Lignins
Hydrocarbons

Typically concentrations are very low

Routine Analysis

A “routine” analysis usually includes allA routine  analysis usually includes all 
the major constituents (except carbonic 
acid).
All the minor constituents (except B and 
Sr that tend to be regarded as trace 
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constituents) are also to be expected.
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Example Routine Analysis
mg/L

Calcium <1
mg/L

Sulphate 59Calcium <1
Magnesium <1
Sodium 550
Potassium 3.5
Iron 8.7
Total Hardness 8

Sulphate 59
Bicarbonate 1315
Chloride 45
Fluoride 0.25
Nitrite/Nitrate <0.1
Total Alkalinity 1078
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_______________________
pH 7.7
Conductivity+ 2300 μS/m

TDS 1321

Balance* 1.01

Charge Balance

mg/L meq/L mg/L meq/Lmg/L meq/L
Calcium <1 <0.05
Magnesium  <1 <0.08
Sodium 550 23.9
Potassium 3.5 0.09
Iron 8.7 0.31

mg/L   meq/L
Sulphate 59       1.22
Bicarbonate   1315      21.6
Chloride 45       1.27
Fluoride 0.25      0.01
Nitrite/Nitrate   <0.1   >0.01
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Total                       24.4

Molarity 0.0477 M

Total                            24.1

Cations/Anions 1.01
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Errors in Analysis
Checking the ion balance is good practice to 
eliminate gross errorsg
Errors mainly arise as a result of:

failure to measure rapidly changing parameters 
in the field (pH, alkalinity, etc)
poor or no filtration (removal of suspended 
solids)
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improper sample storage (pressure, 
temperature, buffering, sealing)

Specialized Analysis
Additional specialized measurements are 
sometimes required for specific projects including:

trace metals
nutrients (mainly N and P species) 
organics (mainly hydrocarbons, chlorinated hc’s)
stable isotopes (14C, 18O, 2H etc)
radionuclides (226Ra, 207Pb,208Po,231Th etc)

Such analyses (listed above in order of increasing
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Such analyses (listed above in order of increasing 
cost) can be very expensive and QA/QC is a 
significant concern.
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You received the data for your sample from the laboratory.

Solutes Measured 
Conc. (mg/L)

Ca2+ 92.0

Sample #3
~ near bridge
pH = 9Mg2+ 34.0

Na + 8.2
K + 1.4

Fe(III) 0.1
HCO3

- 325.0
SO 2 84 0

pH = 9
TDS = 639
Temp = 50F Total 

Dissolved 
Solids
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SO4
2- 84.0

Cl - 9.6
NO3

- 13.0

Major Ions : Ca2+, Mg2+, Na+,K+, HCO3
-/CO3

2-, SO4
2-, Cl-, NO3

- (conc.>1mg/L)
Minor Ions : Fe, Mn, Al, Ba, Cd, Co, Cu, Pb, Hg, etc (conc. <1mg/L)

Fresh waters - (TDS < 1,000 mg/L)
Saline waters - (TDS ~ 35,000 mg/L)

Solutes Measured 
Conc. (mg/L)

C 2+ 92 0

How do we check correctness of analyses?

1. Check TDS 
Measured TDS = Calculated TDS

1 2TDSmeasured1 0Ca2+ 92.0
Mg2+ 34.0
Na + 8.2
K + 1.4

Fe(III) 0.1
HCO3

- 325.0

1.2
TDS calcuated
TDSmeasured1.0 <<

The measured total dissolved 
solids concentration should be 
higher than the calculated one 
because a significant contributor 
may not be included in the 
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HCO3 325.0
SO4

2- 84.0
Cl - 9.6

NO3
- 13.0

TDS

calculation.
If the ratio is out of the range, 
constituents should be reanalyzed. 
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How do we check correctness of analyses?

2. Check Anion-Cation Balance
The solution must be electrically balanced.

Solutes Measured Conc Atomic Molarity Valence meq/LSolutes Measured Conc. 
(mg/L)

Atomic 
weight(g)

Molarity 
(mmol/L)

Valence 
(charge)

meq/L

Ca2+ 92.0
Mg2+ 34.0
Na + 8.2
K + 1.4

Fe(III) 0 1

∑ ∑= anionscations

∑∑
∑∑ −

×=
anionscations

100difference%

9/23/2007 Dr. Mustafa Al Kuisi 15

Fe(III) 0.1
HCO3

- 325.0
SO4

2- 84.0
Cl - 9.6

NO3
- 13.0

∑∑ +
×

anionscations
100difference%

Less than 5% ~ reasonable

What if there is an electrical imbalance?

Possible reasons:
1. The design of the sampling program neglected a major 

dissolved species - An important anion or cation was not 
included in the analysis Sometimes this can point out theincluded in the analysis. Sometimes this can point out the 
presence of a high concentration of an unusual anion or 
cation.

GC

Standard Solution : Ca+2, Mg+2, K+, Na+, HCO3
-, 

CO3
-2, Cl-, NO3

-, SO4 
-2

Ca2+ 92.0

Mg2+ 34 0
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Mg 34.0

Na + 8.2

K + 1.4

unknown 2.2

HCO3
- 325.0

SO4
2- 84.0

Cl - 9.6

NO3
- 13.0
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What if there is an electrical imbalance?

Possible reasons:

2. Laboratory error - A serious, systematic error has occurred 
in the analysis.

3. Using unfiltered water samples that contain particulate 
matter that dissolves in the sample when acid is added for 
preservation purposes.

4. The precipitation of a mineral in the sample container that 
removes the constituents of the mineral from the water
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removes the constituents of the mineral from the water.
5. In certain cases the dissolved species of the element of 

compound may not correspond to the typical species used 
in making the ion balance calculation.

WATER QUALITY ASSESSMENT 
Water quality is determined by assessing three classes of 
attributes: biological, chemical, and physical. 
The national standards for drinking water are developed by 
Environmental Protection Agency (EPA) and WHO. g y ( )
The EPA drinking water standards are categorized as primary 
drinking water standards and secondary drinking water 
standards. 

Primary drinking water standards - organic and inorganic 
chemicals, microbial pathogens, and radioactive elements 
⇒ affect the safety of drinking water 
Secondary drinking water standards - chloride, color, copper, 

9/23/2007 Dr. Mustafa Al Kuisi 18

corrosivity, foaming agents, iron, manganese, odor, pH, sulfates, 
total dissolved solids, and zinc 
⇒ affect qualities of drinking water like taste, odor, color, and 
appearance

These standards set a limit - Maximum Contaminant Level 
(MCL).
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WATER SAMPLING
General Observations: The following information should be 

recorded when conducting the water sampling tests.

1 Name and location of the river stream lake or pond that1. Name and location of the river, stream, lake or pond that 
you are testing. 

2. Latitude and longitude of the water source location. 
3. Date and time of water sampling. 
4. Weather conditions at the time and, if appropriate, recent 

weather conditions (i.e. day after a big rain storm). 
5 Condition of the river stream lake or pond For example
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5. Condition of the river, stream, lake or pond. For example, 
does it appear to be polluted with any debris or matter? 
Are there any fish or plants in the water? Is there a lot of 
algae growing in it? 

6. Any other observations that you think are interesting or 
significant. 
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Odors – result from the presence of decaying organic 
matter or, in the case of mineral springs, the reduction of 
s lfates to h drogen s lfide gas (H S)

PHYSICAL CHARACTERISTICS - 2

sulfates to hydrogen sulfide gas (H2S)
Offensive odors commonly encountered in water 

Compound Descriptive Quality
Amines Fishy
Ammonia Ammoniacal
Diamines Decayed Flesh
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Diamines Decayed Flesh
Hydrogen Sulfide Rotten Egg
Mercaptans Skunk Secretion
Organic Sulfides Rotten Cabbage
Skatole Fecal

Temperature should be measured in the field.
Temp affects a number of water quality parameters.
When temp increased,

PHYSICAL CHARACTERISTICS - 3

p ,
Chemical & biochemical reaction rates increase
Gas solubility decreases (specially impact on oxygen) 
Mineral solubility increases
Growth rates of aquatic organisms increases 

The equilibrium constants must be recalculated using the 
temp of the aquifer.

⎞⎛0 TTΔHK
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

12

12R

1

2

TT
TT

2.303R
ΔH

K
Klog

Where K2 = equilibrium constant at temp of interest, T2
K1 = equilibrium constant at 25°C, T1
ΔH0

R = change in the enthalpy of the reaction (cal/mole)
R = gas constant (1.987 cal/°mole)
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Sedimentation/siltation
Excessive sedimentation in streams and rivers is 
considered to be a major cause of surface water 
pollution in the U S by the USEPApollution in the U.S. by the USEPA
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Measures of sedimentation

Suspended sedimentsSuspended sediments

Turbidity

Embededdness
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Embededdness
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High turbidity and suspended solids
Caused by many factors including: 

soil erosion
domestic and industrial wastewater discharge 
urban runoff
flooding
algal growth due to nutrient enrichment 
dredging operations
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dredging operations 
channelization 
removal of riparian vegetation and other stream 
bank disturbances 

Total suspended solids and turbidity
Both are indicators of the amount of solids 
suspended in the water 

Mineral (e.g., soil particles)Mineral (e.g., soil particles)
Organic (e.g., algae, detritus)

TSS measures the actual weight of material 
per volume of water (mg/L)
Turbidity measures the amount of light 
scattered 
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Therefore, TSS allows the determination of 
an actual concentration or quantity of material 
while turbidity does not
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Measuring TSS
1. Filter a known amount of 

water through a pre-washed, 
pre-dried at 103-105 oC, pre-
weighed (~ + 0.5 mg) filter

2. Rinse, dry and reweigh to 
calculate TSS in mg/L (ppm)

3. Save filters for other 
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analyses such as volatile 
suspended solids (VSS) that 
estimate organic matter

Total suspended solids - method

What type of yp
filter to use?

9/23/2007 Dr. Mustafa Al Kuisi 36



Environmental Geochemistry and 
Pollutants

9/23/2007

Dr. Mustafa Al Kuisi 19

Calculate TSS by using the equation below

Total suspended solids

Calculate TSS by using the equation below

TSS (mg/L) = ([A-B]*1000)/C

where 

A fi l d i d i ht f th filt (i illi )
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A = final dried weight of the filter (in milligrams = mg)

B = Initial weight of the filter (in milligrams = mg)

C = Volume of water filtered (in Liters) 

PHYSICAL CHARACTERISTICS - 1
Turbidity – the clarity of water 
(NTUs:nephelometric units)
This test has little meaning except in 
relatively clear waters but is very useful in y y
defining drinking-water quality in water 
treatment.
The Secchi disk is used to measure how 
deep a person can see into the water. 
Transparency of lake water is affected by 
a variety of factors including human 
activity, decaying plant matter, algal 
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blooms, suspended sediments, and plant 
nutrients.  
Turbidity provides a cheap estimate of the 
total suspended solids or sediments 
(TSS) concentration (in milligrams dry 
weight/L).
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Turbidity measures the 
scattering effect suspended 

Measuring turbidity

g p
particles have on light

inorganics like clay and silt
organic material, both fine 
and colored
plankton and other
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plankton and other 
microscopic organisms
Transparency or turbidity 
tubes

Even small amounts of wave action can 
erode exposed lakeshore sediments, in 
this case a minepit lake from northeastern 
Minnesota. Guess the mineral mined here.

Turbidity - Nephelometric
optics

Nephelometric turbidity estimated byNephelometric turbidity estimated by 
the scattering effect suspended 
particles have on light
Detector is at 90o from the light source
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Turbidity – units and reporting
• Nephelometric Turbidity Units (NTU) 

standards are formazin or other certifiedstandards are formazin or other certified 
material

• JTU’s are from an “older” technology in 
which a candle flame was viewed through a 
tube of water
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tube of water

1 NTU = 1 JTU (Jackson Turbidity Unit)

Turbidity - standards

Top a range ofTop - a range of 
formazin 
standards
Bottom –the 
same NTU 
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range using a 
clay suspension
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Water clarity – transparency 
tubes
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Water clarity – transparency tubes

• Used in streams, 
ponds, wetlands, and 
some coastal zones
Analogous to secchi 
depth in lakes: a 
measure of the 
di l d d
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dissolved and 
particulate material in 
the water



Environmental Geochemistry and 
Pollutants

9/23/2007

Dr. Mustafa Al Kuisi 23

Water clarity – transparency tubes
Useful for shallow water 
or fast moving streams 
bodies where a secchibodies where a secchi
would still be visible on 
the bottom

• It is a good measure of 
turbidity and suspended 
sediment (TSS)
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sediment (TSS)

• Used in many volunteer 
stream monitoring 
programs

Horizontal secchi
Newer method – all-black disk viewed 
horizontally
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Embeddedness
Measure of fine sediment deposition in the 
interstitial spaces between rocks
High embeddedness values indicate habitat 
degradation
Visual assessment used to estimate the 
degree of embeddedness
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Embeddedness – cont.
The stream-bottom 
sediments to the top right 
provide spaces for fish to p p
lay eggs and for 
invertebrates to live and 
hide. 
Excess erosion has 
deposited fine grained 
sediments on the stream
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sediments on the stream 
bottom to the bottom right. 
There are no spaces 
available for fish spawning 
or for invertebrate habitat. 
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Embededdness – visual 
assessment 

Embeddedness: General guidelinesg
0% = no fine sediments even at base of top layer 
of gravel/cobble
25% = rocks are half surrounded by sediment
50% = rocks are completely surrounded by 
sediment but their tops are clean
75% k l t l d d b
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75% = rocks are completely surrounded by 
sediment and half covered
100% = rocks are completely covered by 
sediment

Major species - Ca2+, Mg2+, Na+, K+, HCO3
-, SO4

2-, Cl-, NO3
-

CHEMICAL CHARACTERISTICS - 1

Constituent Source
Ca(HCO3) 2 Dissolution of limestone, marble, chalk, calcite, dolomite, & ( 3) , , , , ,

other minerals containing CaCO3

Mg(HCO3) 2 Dissolution of magnesite, dolomite, dolomitic limestone, & 
other minerals containing MgCO3

Na(HCO3) 2 White salt commonly known as baking soda, typically a 
manufacture product; also present in some natural waters

CaSO4 Minerals such as gypsum, alabaster, & selenite
MgSO Salt beds or mines as Epsom salt
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MgSO4 Salt beds or mines as Epsom salt
Na2SO4 Salt lakes, salt beds, caverns, etc
CaCl2 Natural brines, salt beds, etc & by-product of the chemical 

industry
MgCl2 Natural brines, salt beds, etc
NaCl Salt lakes, salt beds, connate water, other natural brine
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Minor species – derived from the contact of water with 
various mineral deposits.

3 2 3 2 2 3 2

CHEMICAL CHARACTERISTICS - 2

Al3+, NH4
+, As+, Ba2+, BO4

3 -, Cu2+, Fe2+, Fe3+, Mn2+, 
HSO4

-, HSO3
-, CO3

2-, F-, OH-, H2PO4
-, HPO4

2-, PO4
3-, S2 -, 

SO3
2 -

Inorganic species added by humans 
– As3+ , Ba2+, Cd2+, Cr3+, Cr6+, Pb2+, Hg2+, Se, Ag2+, Zn2+, 
CN-
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– These constituents are of concern primarily because 
of their toxicity to microorganisms, plants, and animals.
– Typically the presence of these constituents is due to 
the discharge of improperly processed industrial 
wastes.

CHEMICAL CHARACTERISTICS - 3
pH (Hydrogen Ion Activity) affects aqueous complexation, 

mineral solubility, adsorption properties, gas solubility, & 
biochemical reactions.

7

7.5

8

8.5

9

9.5

pH

Effect of CO2 gas pressure
on groundwater PH

A sample of GW ~ 
originally in equilibrium 
with calcite at PCO2 = 0.1 
atm
⇒ allowed to equilibrate 
with atmosphere (PCO2 = 
0 0003 atm)
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6

6.5

7

-4.5 -3.5 -2.5 -1.5 -0.5
Log PCO2

0.0003 atm) 
Large change in pH 

(pH 6.5 → 8.4) would 
have a major effect on 
the solubility of 
minerals.
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pH
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pH 
The pH of water determines the solubility (amount that can 
be dissolved in the water) and biological availability (amount 

that can be utilized by aquatic life) 
of chemical constituents such as14 of chemical constituents such as 
nutrients (phosphorus, nitrogen, 
and carbon) and heavy metals 
(lead, copper, cadmium, etc.). 

7
8
9

10
11
12
13
14

– sea water
– distilled water

bleach –
ammonia –
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1
2
3
4
5
6 – pure rain

– most fish species die

lemon juice –

beer –
vinegar –
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pH – importance in aquatic systems

The pH of a sample of water is a measure 
of the concentration of hydrogen ions.

pH determines the solubility and biological 
availability of chemical constituents such as 
nutrients (phosphorus, nitrogen, and 
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carbon) and heavy metals (lead, copper, 
cadmium, etc.).

pH - reporting
pH can be measured electrometrically or 
colorimetrically (pH paper) BUT ONLY thecolorimetrically (pH paper) BUT ONLY the 
former technique is approved by the EPA 
and USGS for natural waters.
The electrometric method uses a hydrogen 
ion electrode. 
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pH meters require extensive care in handling 
and operation.
Report to the nearest 0.1 standard pH unit
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pH – probes
Field probe types:

Combination probes (e g YSI)Combination probes (e.g.YSI)
Less expensive; more rugged design
Less precise
Shorter life because reference solution cannot be replenished

Separate reading and reference electrodes (e.g., 
Hydrolab)
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Costs more
More precise; faster response time
Allows user maintenance; Teflon junction and electrolyte can be 
replaced 

pH – probes
Or, alternatively, a bench or hand-held meter 
and probe can be used in a fresh subsample 
if you don’t have a field meter with a pHif you don t have a field meter with a pH 
probe.
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Alkalinity – to determine the dissolved inorganic carbon 
concentration (CO2(aq), H2CO3, HCO3

- , CO3
2-)  of a water sample

Hardness to measure the soap consuming capacity & scale

CHEMICAL CHARACTERISTICS - 4

Hardness – to measure the soap-consuming capacity & scale-
forming tendency of the water (Ca2+ + Mg2+)

Conductivity 
– measure of electrical current (μS/cm)
Because the electrical current is transported by the ions in 
solution, the conductivity increases as the concentration of 
i i
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ions increases. 
Conductivity estimates the amount of total dissolved solids 
(TDS).

Redox = Oxidation + Reduction
Oxidation : substance loses or donates electrons (e-)
Reduction : substance gains or accepts electrons (e-)

CHEMICAL CHARACTERISTICS - 5

g p ( )
Redox reactions can be thought of as reactions involving 
transfer of oxygen. 

In solution chemistry it is generally more convenient to 
consider redox reactions as electron transfers.

+++ ++=+ 2HO
2
12FeOH2Fe 2

2
2

3
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The redox potential is a measure of the affinity of a 
substance for electrons.
Unit in volts - a transfer of electrons is an electrical current. 

+−+ =+ 23 FeeFe
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Redox Potential can be measured 
using Redox tester on site.

REDOX POTENTIALS (Eh)

Redox Potential (Eh) by the Nernst equation:

where E0 = standard potential (at 25°C & 1 atm pressure)
R = gas constant (kcal/(mol•K)

sp
0 lnK

nF
RTEEh +=

+

−=
H

H0

a
p

log
1

0.0592EEh
2

1

2
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R  gas constant (kcal/(mol K)
T = temperature (kelvins)
F = Faraday constant (23.1 kcal/V)
n = number of electrons
Ksp = solubility product )

2.303RT
GΔ(logK

o
r

SP
−

=

1 0
1.2
1.4

Eh-pH DIAGRAM
This diagram shows the 
stability limits of water at 
25°C and 1 bar.

Eh
 (v

ol
ts

)

-0.2
0.0
0.2
0.4
0.6
0.8
1.0

At conditions above the 
top dashed line, water is 
oxidized to O2; at 
conditions below the 
bottom dashed line, 
water is reduced to H2. 
No natural water can

Water 
is stable

Natural water
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-0.8
-0.6
-0.4

No natural water can 
persist outside these 
stability limits for any 
length of time.
Water in nature is usually 
between pH 4 and pH 9.

Natural water
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1.0

1.2

Eh-pH DIAGRAM
This diagram 
shows for the 
Eh-pH range 

Eh
 (v

ol
ts

)

0 0

0.2

0.4

0.6

0.8 of common 
geological 
environments
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-0.6

-0.4

-0.2

0.0

pH

1 0
1.2
1.4

F 3+

Eh-Ph diagram can be 
used to show the fields 
of stability for both 
solid and dissolved

Eh-pH DIAGRAM

Eh
 (v

ol
ts

)

-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Fe(OH)3(s)Fe 2+

Fe 3+ solid and dissolved 
ionic species.
Iron Fe will be mobile 
only under the Eh-pH 
conditions where Fe2+

and Fe3+ are stable in 
the diagram. This will 
occur either under 
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-0.8
-0.6
-0.4 strongly acidic 

conditions at any Eh, or 
under reducing 
conditions under more 
normal pH conditions.

Water is stable
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Dissolved Oxygen (DO) – the only gas routinely measured 
in water samples (mg/L).
Dissolved oxygen refers to the volume of oxygen that is

CHEMICAL CHARACTERISTICS - 6

Dissolved oxygen refers to the volume of oxygen that is 
contained in water. Oxygen enters the water by 
photosynthesis of aquatic biota and by the transfer of 
oxygen across the air-water interface. The amount of DO 
depends on the water temperature, salinity, and pressure.
When performing the dissolved oxygen test, only grab 
samples should be used, and the analysis should be 

f d i di t l Th f thi i fi ld t t th t
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performed immediately. Therefore, this is a field test that 
should be performed on site. 
As dissolved oxygen levels in water drop below 5.0 mg/L, 
aquatic life is put under stress. The lower the 
concentration, the greater the stress. 

Dissolved Oxygen
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DO – importance and reporting
Oxygen is produced during photosynthesis 
and consumed during respiration and 
d itidecomposition. 
Generally < 3 mg/L is stressful to aquatic 
life.
Units of measurement are:

Concentration: mg/L = ppm; concentrations range 0 0
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Concentration: mg/L = ppm; concentrations range 0.0 
to 20 mg/L
% saturation – used to determine if water is fully 
saturated with oxygen at a particular temperature

DO – techniques
Probe types and measurement techniques:

Winkler titration
Amperometric (polarographic) method, most 
commonly used
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DO – probes
Most common sensor is the temperature 
compensated polarographic membrane-type 
(amperometric)(amperometric)

Temperature sensitive (but virtually all are 
compensated).
The probes actually consume O2 as they work so 
measurements require moving water using either a 
built-in stirrer (typical in multiparameter sondes and 
BOD probes) or “hand jiggling” during the
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BOD probes) or hand jiggling  during the 
measurement.
in situ sensors are prone to fouling by 
algal/bacterial slimes and by silt in streams.

DO probes and meters
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Electrical Conductivity
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EC - importance
Cheap, easy way to characterize the total 
dissolved salt concentration of a water 
sample

For tracing water masses and defining 
mixing zones

G d t l
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Groundwater plumes
Stream flowing into another stream or into a lake or 
reservoir
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Principle of measurement

• A small voltage is applied between 2 parallel 
metal rod shaped electrodes, usually 1 cm apartp , y p

• Measured current flow is proportional to the 
dissolved ion content of the water

• If the sensor is temperature compensated to 
2 C C “ f ” C ( C2 )
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25oC, EC is called “specific” EC (EC25)

EC25 - units
What in the world are 
microSiemens per centimeter (µS/cm)?

• Units for EC and EC25 are mS/cm or μS/cm 
@25oC. The WOW site reports it as EC 
@25oC (in μS/cm).

• Usually report to 2 or 3 significant figures
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• Usually report to 2 or 3 significant figures 
(to + ~ 1-5 μS/cm)
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EC25
EC25 values in streams reflect primarily a 
combination of watershed sources of salts and 
the hydrology of the systemthe hydrology of the system

wastewater from sewage treatment plants and 
industrial discharge 
wastewater from on-site wastewater treatment and 
dispersal systems (septic systems and drainfields) 
urban runoff
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agricultural runoff
acid mine drainage
atmospheric inputs

Snowmelt runoff example
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Temperature
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Temperature importance

Temperature affects:
the oxygen content of the water (oxygen levels 
become lower as temperature increases) 
the rate of photosynthesis by aquatic plants
the metabolic rates of aquatic organisms
the sensitivity of organisms to toxic wastes,
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the sensitivity of organisms to toxic wastes, 
parasites, and diseases
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Temperature measurement - probes
Types of probes

Liquid-in-glass
Thermistor: based on measuring changes in electrical resistance g g
of a semi-conductor with increasing temperature.

9/23/2007 Dr. Mustafa Al Kuisi 79

thermistor on a YSI sonde

Temperature changes

Causes of temperature change include:Causes of temperature change include:
weather
removal of shading streambank vegetation,
impoundments (a body of water confined 
by a barrier, such as a dam) 
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discharge of cooling water
urban storm water
groundwater inflows to the stream
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Other Water Quality Parameters
Nutrients – nitrogen and 
phosphorusphosphorus
Fecal coliforms
Biochemical oxygen demand (BOD)
Metals
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Metals
Toxic contaminants

Fecal coliforms

Pathogens are number onePathogens are number one 
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Water sampling - microbes
Sterile technique:

Containers must beContainers must be 
sterilized by autoclaving 
or with gas used to kill 
microbes
Take care not to 
contaminate the container 
W t l h ld b
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Water samplers should be 
swabbed with 70 % 
alcohol

Bacteria – E. coli and fecal 
coliforms

Fecal bacteria are used as indicators of 
ibl t i tipossible sewage contamination

These bacteria indicate the possible 
presence of disease-causing bacteria, 
viruses, and protozoans that also live in 
human and animal digestive systems
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E. coli is currently replacing the fecal 
coliform assay in most beach monitoring 
programs
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Water sample collection – grab 
samples
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Grab samples for fecal 
coliforms are taken with 
sterile containers

Analyte Volume needed
chlorophyll >500 mLs

Suggested sample volumes

TSS Often > 1 L
total phosphorus
total nitrogen
anions

200 to 500 mLs

Dissolved nutrients ~ 100mLs
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Total and dissolved carbon ~60 mLs
Metals ~60 mLs

color, DOC ~60 mLs
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Stream sampling– sample labeling
An unlabeled sample 
may as well just be 
dumped down the

Use good labels not 
masking tape etcdumped down the 

drain.
masking tape, etc. 
Poor labels often fall 
off when frozen 
samples are thawed.
Use permanent 
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markers NOT ball 
point pens, pencils in 
a pinch

Automated stream monitoring
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Water sampling - automated
Automated stream 
sampling stations 
provide continuous 
monitoring of a variety of 
parameters
These units are capable 
of both collecting water 
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samples and measure 
various water quality 
parameters

Automated stream samplers
Flow weighted composites
Fl i ht d di tFlow weighted discrete
Sampling triggered by predetermined set 
point such as:

Flow
Precipitation
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Precipitation
Any other parameter measured by in-stream 
sensors
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ALKALINITY
In aqueous solutions, positive and negative charges must 
balance.
At pH=7, [H+] = [OH-] 
At pH>7, [H+] < [OH-] ~ must contain cations other than H+

For CO2 - H2O system, 
possible species are: 
the charge-balance equation is:

Note that, each mole of CO3
2- provides two equivalents of 

negative charge in solution so the concentration of
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negative charge in solution, so the concentration of 
carbonate must be multiplied by 2.

If we add more CO2 into the system,

[H2CO3
*] H2CO3

*  = H+ + HCO3
-

HCO3
- = H+ + CO3

2-

An equivalent 
amount of H+ must 
also be formed to 
balance the charge.

ALKALINITY
Increasing partial pressure of CO2

⇒ Decreasing pH (increased H+ activity) in solution
♣ What is the partial pressure?p p
Air is a mixture of many different gases. Each gas in the 
mixture exerts a pressure called the partial pressure of that 
gas.  Air pressure is the sum of all these partial pressures. 
If we introduce sodium into the system, 
the charge-balance equation is:
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Then, let’s add strong acid. What would be changed?
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ALKALINITY
For all dissolved species, the charge balance equation can be 
extended:
2[ Ca+2 ] + 2[ Mg+2 ] + [ K+ ] + [ Na+ ] + [ H+ ] + • • • • •

[ Cl ] + 2[ SO 2 ] + [ NO ] + [ HCO ] + 2[ CO 2 ] + [ OH ] += [ Cl- ] + 2[ SO4
-2 ] + [ NO3

- ] + [ HCO3
- ] + 2[ CO3

2- ] + [ OH- ] + • • • •
• Let’s put all the conservative ions on the left, and all the non-

conservative ions on the right.
Σ conservative cations - Σ conservative anions (in equivalents) 
= [ HCO3

- ] + 2[ CO3
2- ] + [ OH- ] - [ H+ ]

• Note that, if the left-hand side of the equation is conservative, 
then the sum of all the non-conservative species on the right-
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p g
hand side of the equation must also be conservative. Thus, 
although none of the individual species on the right is 
conservative, their mathematical combination as shown is 
conservative. Therefore, the quantity on the right-hand side of 
the equation is a special combination, and we call this quantity 
the total alkalinity.

ALKALINITY
AlkT = [HCO3

-] + 2[CO3
2-] + [OH-] - [ H+ ]

Total alkalinity can be changed?
add strong acid or baseadd strong acid or base
dissolution or precipitation of a solid phase
changes in CO2 partial pressure
Because precipitation/dissolution reactions can change 
alkalinity, it is important to measure this quantity 
immediately in the field. 
Waiting to measure alkalinity in the laboratory is one of the
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Waiting to measure alkalinity in the laboratory is one of the 
most common reasons for unacceptable charge-balance 
errors in chemical analyses of natural waters.
Alkalinity is measured by titration with strong acid. A known 
volume of sample is titrated until an endpoint.
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TITRATION
Add strong acid Assume starting pH ~9.9 

Δ pH
pH ~ 8.3 pH ~ 4.5
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water sample Acid Added

water sample color

Need to know the volume of acid solution 
required to change the color of sample.

dye

-1

Titration curve for a Na2CO3 solution, together with a Bjerrum 
plot for the same solution. A is the beginning of the titration, B 
is the carbonate endpoint, C is the region of strong carbonate 
buffering, and D is the bicarbonate endpoint.

-4

-3

-2
10.33H2CO3 CO3

2-HCO3
-6.35
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g 

a i

C
D
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-2

-1

10.33H2CO3 CO3
2-HCO3

-6.35

Bjerrum plot showing the activities of inorganic carbon species as a 
function of pH for a value of total inorganic carbon of 10-3 mol L-1.

-5

-4

-3
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g 

a i 96% HCO3
-

+ 4% CO3
2-
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pH
0 2 4 6 8 10 12 14

-7

-6
Common pH 
range in nature

In most natural waters, bicarbonate is the dominant carbonate species!

ALKALINITY
Alkalinity is normally reported by the laboratory in units of 
mg/L as CaCO3 (calcium carbonate).
Alkalinity (eq/L) = Alkalinity (mg/L as CaCO3) x 2 eq/moley ( q ) y ( g 3) q
This does not mean that CaCO3 is necessarily present in the 
solution. What it means is that the solution has numerically the 
same alkalinity as a solution in which the same weight of CaCO3
per liter has been dissolved.
Calculation of alkalinity from a titration is according to:

3acidacid
T

CaCOwt.eq.NmLAlk ××
=
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sample
T mL

Alk

The equivalent weight of CaCO3

eq
g50

eq 2
mole 1

mole
100gCaCO of mass molar 3 =×

♣ recall that an equivalent is essentially a mole of charge
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Example. A 100 mL sample is titrated to the methyl orange end 
point with 2 mL of 0.5 N H2SO4. What is the total alkalinity in 
mg L-1 as CaCO3 and what is the concentration of HCO3

- in mg 

ALKALINITY

L-1?

The total alkalinity in mg L-1 as CaCO3 is given by:
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The concentration of HCO3
- is given as:

WATER HARDNESS
Hardness - an undesirable property of water resulting from 
the presence of primarily Ca2+ and Mg2+ ions.
Hardness produces a scummy residue and scale on 

l bi d i kplumbing and sinks.
Hardness can be expressed as the sum of the calcuim and 
magnesium concentrations, given in equivalents per liter or 
the equivalent weight of CaCO3 or ppm as CaCO3.

Total hardness (eq/L) = Ca2+ (eq/L) + Mg2+ (eq/L) 
Hardness rating Concentration of CaCO3 (mg/L)
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Soft 0 to <75
Medium hard 75 to <150

Hard 150 to <300
Very hard 300 and greater
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Hardness
A term often used to characterize the ability of 
a water to:

cause soap scumcause soap scum
Ca2+ + (Soap)- ↔ Ca(Soap)2 (s)

increase the amount of soap needed
cause scaling on pipes
cause valves to stick due to the formation of 
calcium carbonate crystals
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calcium carbonate crystals 
leave stains on plumbing fixtures

Hardness
Total Hardness

Technically - the sum of all polyvalent cations
Practically - the amount of calcium and 
magnesium ions (the predominant minerals in 
natural waters)  
It is divided into carbonate and noncarbonate
hardness.
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Hardness

Description Hardness rangeDescription Hardness range
(mg/L as CaCO3)

Soft 0 - 75
Moderately hard 75 - 100
Hard 100 - 300
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Very hard > 300

Formation of Hardness
Precipitation

CO2 + H2O → H2CO3

Subsoil

Topsoil
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Limestone CaCO3(s) + H2CO3 → Ca(HCO3)2
MgCO3(s) + H2CO3 → Mg(HCO3)2
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Hardness
Carbonate Hardness

Often called "temporary hardness" becauseOften called temporary hardness  because 
heating the water will remove it.  When the 
water is heated, the insoluble carbonates 
will precipitate and tend to form bottom 
deposits in water heaters.
Ca2+ Mg2+ associated with HCO3

- CO3
2-

9/23/2007 Dr. Mustafa Al Kuisi 105

Ca , Mg associated with HCO3 , CO3

CH = TH or Total alkalinity, whichever is less

Hardness
Non-Carbonate Hardness  

Called permanent hardness because it is notCalled permanent hardness because it is not 
removed when the water is heated.  It is much 
more expensive to remove non-carbonate 
hardness than carbonate hardness.
Ca2+, Mg2+ associated with other ions, Cl-, NO3

-, 
SO4

2-
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4

NCH = TH - CH
If Alkalinity ≥ Total hardness, then NCH = 0
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Hardness Units
milligrams per liter (mg/L) as calcium 
carbonate
parts per million (ppm) as calcium carbonate
grains per gallon of hardness (to convert from 
grains per gallon to mg/L, multiply by 17.1)
equivalents/liter
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q
equivalents

acids and bases: number of H+ transferred
redox reactions: number of e- transferred

Hardness Units

Most common expression of hardnessMost common expression of hardness
mg/L of X as CaCO3 =

Total hardness = [Ca2+] + [Mg2+] + …
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can use: M, mM, eq/L, meq/L, mg/L as CaCO3

cannot use: mg/L
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Example 6: Calculations
A sample of water having a pH of 7.2 has 
the following concentrations of ionsthe following concentrations of ions

Ca2+ 40 mg/L
Mg2+ 10 mg/L
Na+ 11.8 mg/L
K+ 7.0 mg/L
HCO3

- 110 mg/L
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HCO3 110 mg/L
SO4

2- 67.2 mg/L
Cl- 11 mg/L

Calculate the TH, CH, NCH, Alkalinity

Example 6: Calculations
Ion Conc.

/L
M.W.
/ l ⎮n⎮

Eq. Wt.
/

Conc.
/L

Conc.
/Lmg/L mg/mmol ⎮n⎮ mg/meq meq/L mg/L as

CaCO3
Ca2+ 40.0 40.1
Mg2+ 10.0 24.3
Na+ 11.8 23.0
K+ 7.0 39.1

HCO3
- 110.0 61.0
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HCO3 110.0 61.0
SO4

2- 67.2 96.1
Cl- 11.0 35.5
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Example 6: Calculations
Ion Conc.

mg/L
M.W.

mg/mmol
⎮n⎮ Eq. Wt.

mg/meq
Conc.
meq/L

Conc.
mg/L asmg/L mg/mmol mg/meq meq/L mg/L as
CaCO3

Ca2+ 40.0 40.1 2 20.05
Mg2+ 10.0 24.3 2 12.15
Na+ 11.8 23.0 1 23.0
K+ 7.0 39.1 1 39.1

HCO3
-

110.0 61.0 1 61.0
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SO4
2- 67.2 96.1 2 48.05

Cl- 11.0 35.5 1 35.5
Sample Calculation: Equivalent Weight of Ca2+ = M.W. / |n|

= 40.1/2 = 20.05

Example 6: Calculations
Ion Conc. 

mg/L 
M.W. 

mg/mmol
⎮n⎮ Eq. Wt. 

mg/meq
Conc. 
meq/L

Conc. 
mg/L as 
CaCO33 

Ca2+ 40.0 40.1 2 20.05 1.995  
Mg2+ 10.0 24.3 2 12.15 0.823  
Na+ 11.8 23.0 1 23.0 0.51  
K+ 7.0 39.1 1 39.1 0.179  

HCO3
- 110.0 61.0 1 61.0 1.80  

SO4
2- 67.2 96.1 2 48.05 1.40  

Cl- 11 0 35 5 1 35 5 0 031
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Cl 11.0 35.5 1 35.5 0.031
 

Sample Calculation: Concentration of Ca2+ =
(Concentration in mg/L) / (Equivalent Weight in mg/meq) =

(40.0 mg/L) / (20.05 mg/meq) = 1.995 meq/L
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Ion Conc.
mg/L

M.W.
mg/mmol

⎮n⎮ Eq. Wt.
mg/meq

Conc.
meq/L

Conc.
mg/L as
CaCO3

Ca2+ 40.0 40.1 2 20.05 1.995 99.8
Mg2+ 10 0 24 3 2 12 15 823 41 2Mg 10.0 24.3 2 12.15 .823 41.2
Na+ 11.8 23.0 1 23.0 .51 25.7
K+ 7.0 39.1 1 39.1 .179 8.95

HCO3
-

110.0 61.0 1 61.0 1.80 90.2

SO4
2- 67.2 96.1 2 48.05 1.40 69.9

Cl- 11 0 35 5 1 35 5 031 15 5
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Cl 11.0 35.5 1 35.5 .031 15.5
Sample Calculation: Concentration of Ca2+ in mg/L as CaCO3 =

(Concentration in meq/L) * (Equivalent Weight of CaCO3) =
(1.995 meq/L) / (50 mg/meq) = 99.8 mg/L as CaCO3

Example 6: Calculations
Check Solution

Σ(cations) = Σ(anions)     to within ± 10%
175.6    =     175.6        mg/L as CaCO3  

(Can check using concentrations in meq/L or 
mg/L as CaCO3)

Total Hardness = Σ of multivalent cations
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Total Hardness  Σ of multivalent cations
= (Ca2+) + (Mg2+) = 99.8 + 41.2 =

141 mg/L as CaCO3
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Example 6: Calculations
Carbonate Hardness (the portion of the 
hardness associated with carbonate or bicarbonate)hardness associated with carbonate or bicarbonate)

Alkalinity = 90.1 mg/L as CaCO3 

TH = 141 mg/L as CaCO3

CH = 90.1 mg/L as CaCO3

(Note: if TH < Alk then CH = Alkalinity; and NCH = 0 )

N b t H d
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Non-carbonate Hardness
NCH = TH - CH  = 141 - 90.1 =

50.9 mg/L as CaCO3

TDS (Total Dissolved Solids) - TDS meter
This meter works by measuring the electrical 

CHEMICAL CHARACTERISTICS - 5

conductivity of the water. Conductivity increases as the 
amounts of salts and other dissolved solids increase in 
the water. Conductivity and TDS are two different but 
related tests. One can be calculated from the other by 
multiplying or dividing by a certain fixed number. 
TDS (mg/L) = 0.55 to 0.7 x conductivity of sample ( μS/cm)
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BIOLOGICAL ASSESSMENT 
Benthic macroinvertebrates 
are examined to assess the 
biological attributes of b o og ca att butes o
water quality. 
These organisms are 
abundant, easier to capture 
than fish, and easier to 
identify than algae or 
protozoa. 
Th i i di t
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Their presence indicates a 
high quality of water, while 
their absence suggests 
water may be polluted. 

CHEMICAL ASSESSMENT 
Commonly measured chemical parameters are:

pH
Alkalinityy
Hardness
Nitrates, Nitrites, & Ammonia
Phosphates
Dissolved Oxygen & Biochemical Oxygen Demand
Fecal Coliform (bacteria) – too small to detect during the 
biological assessment

9/23/2007 Dr. Mustafa Al Kuisi 118

biological assessment.
Conductivity

Portable laboratories
and test kits



Environmental Geochemistry and 
Pollutants

9/23/2007

Dr. Mustafa Al Kuisi 60

pH 
Whether a water will be scale-forming or corrosive?
Langelier Saturation Index (LI)

Determines if calcium carbonate is going to precipitate
LSI = pH – pHsLSI  pH pHs
pH = actual pH value measured in the water
pHs = pH of the water in equilibrium with solid CaCO3
If LSI > 0 calcium carbonate will precipitate 
If LSI < 0 calcium carbonate won’t precipitate
The CaCO3 layer deposited on pipe surfaces acts as a 
protective coating.

Ryznar Index
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Determines the degree of scale formation
RI = 2 pHs – pH
If RI < 5.5 heavy scale will form
If 5.5 < RI < 6.2 scale will form
If 6.8 < RI < 8.5 water is corrosive
If RI > 8.5 water is very corrosive

]][CO[H

K

][HCO][CaK
logpH

2
3

SP

3HCO
2

Ca2
S

3
2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−+

−+
−+ γγ

pH of the water in equilibrium with solid CaCO3

Estimating the activity coefficient γi

product solubilityK
tcoefficienactivity   

constantmequilibriu 
][HCO

]][CO[H  K  where

SP

3

3
2

=
=

== −

iγ

Debye-Hückel method
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y
: accurate up to I ~ 0.01 M
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Estimating the activity coefficient γi  – continued
Davies method (usually adequate for fresh water) 
: accurate up to I ~ 0.1 M

⎟
⎟
⎞

⎜
⎜
⎛

= IIγ 0 2Azlog
2
1

2

⎟
⎟
⎠

⎜
⎜
⎝

−
+

−= I
I

γi 0.2
1

Azlog
2
1

Güntelberg method : accurate up to I ~ 0.1 M

1/2

1/22

1
)0.5(zlog
I

Iγ i
i +

−=
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Estimating the ionic strength I in solution

Langelierby  TDS(mg/L))10(2.5
ionconcentrat molarm where

zm
2
1

5

2

××=

=

=

−

∑

I

I ii

Example. Determine the Langelier & Ryznar indexes for the 
Denver water supply. The characteristics of the water are 
summarized.

Constituent Conc. (mg/L) Conc. (mol/L)
TDS 179TDS 179 -
Ca+2 42 1.05 x 10 -3

HCO3
- 115 1.89 x 10 -3

pH = 7.9,  Temp = 20°C

Determine the ionic strength in solution based on TDS.
Determine activity coefficients for HCO3

- using Güntelberg 
th d
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method .
Determine activity coefficients for Ca+2 using Güntelberg 
method .
Determine the value of pHS.
Determine the Langelier index.
Determine the Ryznar index.
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T, °C Km K1, mol/L K2, mol/L Ksp, mol2/L2

5 3.02 x 10-7 2.75 x 10-11 8.13 x 10-9

♣ Carbonate Equilibrium Constants as a Function of Temperature

10 3.46 x 10-7 3.24 x 10-11 7.08 x 10-9

15 3.80 x 10-7 3.72 x 10-11 6.03 x 10-9

20 4.17 x 10-7 4.17 x 10-11 5.25 x 10-9

25 1.58 x 10-3 4.47 x 10-7 4.68 x 10-11 4.57 x 10-9

40 5.07 x 10-7 6.03 x 10-11 3.09 x 10-9
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60 5.07 x 10-7 7.24 x 10-11 1.82 x 10-9

Ksp = Solubility product constant for CaCO3

][HCO
]][CO[HK

]CO[H
]][HCO[HK

][CO
]CO[HK

3

2
3

2*
32

3
1

aq2

32
m −

−+−+

===

NITROGEN (N)
Nitrogen gas (N2) makes up 78.1% of the Earth’s air. 
Nitrogen is an essential nutrient that is required by all plants 
and animals for the formation of amino acids (the molecular 
units that make up protein). 
In order for N to be used for growth it must be "fixed" 
(combined) in the form of ammonia (NH3) or nitrate (NO3).

N2 + 8H+ + bacteria = 2NH3 + H2 
NH3 + O2 + bacteria = NO2 

- + 3H+ + 2e-
NO2 

- + H2O + bacteria = NO3 
- + 2H+ +2e-

( ) ( )
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Ammonia (NH3) continually changes to ammonium (NH4
+) and 

vice versa, with the relative concentrations of each 
depending on the water's temperature and pH. Ammonia is 
extremely toxic; ammonium is relatively harmless. At higher 
temperatures and pH, more of the nitrogen is in the toxic 
ammonia form than at lower pH. 
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Maximum Contaminant Level (MCL)
nitrite-N : 1 mg/L
nitrate-N : 10 mg/L

NITROGEN (N)

nitrate N : 10 mg/L 
nitrite + nitrate (as N) : 10 mg/L
Sources of Contaminant in Drinking Water
Runoff from fertilizer use; leaching from septic tanks, 
sewage; erosion of natural deposits
Potential Health Effects from Ingestion of Water
Infants below the age of six months who drink water 
containing nitrate in excess of the MCL could become
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containing nitrate in excess of the MCL could become 
seriously ill and, if untreated, may die. Symptoms include 
shortness of breath and blue-baby syndrome.
Excessive concentrations of nitrogen can lead to 
eutrophication and subsequent degradation of stream 
water quality. 

PHOSPHATES
Phosphorus is an essential nutrient for for all life forms. 
Never found free in nature, it is widely distributed in 
combination with minerals. 
Phosphorus is usually present in natural water as phosphatesPhosphorus is usually present in natural water as phosphates 
(PO4

-3; orthophospates, polyphosphates, and organically 
bound phosphates)
Factors Affecting Phosphorus Concentrations

Wastewater and Septic System Effluent - Organic phosphates are 
contributed to sewage by body waste and food residues. 
Detergents
Fertilizers
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Fertilizers 
Animal Waste 
Development/Paved Surfaces - Development can cause soil 
erosion, which will release phosphorus. 
Industrial Discharge - Phosphates are often added to water to 
prevent iron oxides or calcium carbonates from forming. 
Forest Fires – can cause soil erosion
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PHOSPHATES
No national or state criteria have been established for 
concentrations of phosphorus compounds in water. 
EPA recommendations

total phosphate should not exceed 0.05 mg/L (as 
phosphorus) in a stream at a point where it enters a lake 
or reservoir
total phosphate should not exceed 0.1 mg/L in streams 
that do not discharge directly into lakes or reservoirs 

Excessive concentrations of phosphate can lead to 
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eutrophication and subsequent degradation of stream 
water quality. 
Up to 4 grams per day does not appear to have any 
negative side effects. Higher levels cause gastrointestinal 
discomfort and bone density problems.

Biological Oxygen Demand 
(BOD) is a measure of the 
oxygen used by 
microorganisms to

BIOCHEMICAL OXYGEN DEMAND (BOD)

dead plants leavesmicroorganisms to 
decompose this waste.
Nitrates and phosphates are 
plant nutrients and can 
contribute to high BOD 
levels.
When BOD levels are high, 
dissolved oxygen (DO) levels

dead plants, leaves, 
grass clippings, manure, 
sewage, or food waste

microorganisms
dissolved oxygen
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dissolved oxygen (DO) levels 
decrease ⇒ fish and other 
aquatic organisms may not 
survive

microorganisms

BOD level of 1-2 ppm - very good 
BOD level of 3-5 ppm - moderately clean 
BOD level of 6-9 ppm - somewhat polluted

- index of the degree of organic pollution in water
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FECAL COLIFORM
Harmless bacteria ~ present in large numbers                       
in the feces and intestinal tracts of humans                          
and other warm-blooded animals
E i t l I tEnvironmental Impact:

The presence of fecal coliform bacteria in aquatic 
environments indicates that the water has been contaminated 
with the fecal material of man or other animals. 
At the time this occurred, the source water may have been 
contaminated by pathogens or disease producing bacteria or 
viruses which can also exist in fecal material. 

Methodology: Membrane filtration
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Methodology: Membrane filtration
Criteria

Swimming ~ fewer than 200 colonies/100 mL
Fishing and boating ~ fewer than 1000 colonies/100 mL
Domestic water supply ~ fewer than 2000 colonies/100 mL.
There cannot be any fecal coliforms in drinking water.

CONDUCTIVITY
The ability of water to carry an electrical current
An indirect measure of the presence of dissolved solids 
Factors affecting conductivity

Geology and soil in the watershed 
Acid mine drainage
Agricultural runoff
Road runoff

Generally, there aren’t regulatory levels for conductivity.
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Generally, there aren t regulatory levels for conductivity. 
Instead, the concentration of total dissolved solids (TDS) is 
often regulated. 
TDS 500 mg/L in drinking water - secondary drinking water 
standards by EPA
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PHYSICAL ASSESSMENT 

Turbidity (a measure of water clarity ) cannot go above 
5 nephelometric turbidity units (NTUs) by EPA.p y ( ) y
Total Suspended Solids (TSS) – High TSS causes less 
dissolved oxygen to be released into the water by 
plants.
Total Dissolved Solids (TDS) is used to estimate the 
quality of drinking water, because it represents the 
amount of ions in the water. Water with high TDS often 
h b d t t d/ hi h t h d d ld
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has a bad taste and/or high water hardness, and could 
result in a laxative effect. 

Water Quality Information References

Colorado Department of Public Health and Environment -
Water Quality Control Division 

http://www.cdphe.state.co.us/wq/wqhom.asp
U.S. EPA - National Primary Drinking Water Regulations

http://www.epa.gov/safewater/mcl.html
U.S. Geological Survey - National Water Quality 
Assessment Program 

htt // t / / i 1136 ht l
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http://water.usgs.gov/nawqa/circ-1136.html
U.S. Department of Agriculture - National Extension 
Water Quality Database

http://hermes.ecn.purdue.edu/server/water
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Visualizing Chemical Data

There are a large number of plots used toThere are a large number of plots used to 
visualize ion abundances:

Pie Chart
Collins Diagram (Bar Chart)
Stiff Diagram
Shooler Diagram

9/23/2007 Dr. Mustafa Al Kuisi 133

S oo e ag a
Other plots are use to group waters and 
interpret their origins:

Piper Diagram

Pie Charts
Na+K Na+K

Ca

Ca

Mg

Cl

Mg

SO4

HCO3

Cl

Ca
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SO4

HCO3

Na+K

Mg

SO4

HCO3

Cl

1                   100                    1000              10000 mg/L
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PIE CHARTS
Na+K Na+K

Ca

Ca

Mg

Cl

Mg

SO4

HCO3

Cl

Ca
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SO4

HCO3

Na+K

Mg

SO4

HCO3

Cl

1                   100                    1000              10000 mg/L

RADIAL DIAGRAMS

Used for individual 
samplessamples
The shape formed by the 
radial diagrams will 
quickly identify samples 
that have similar 
compositions and are 
particularly useful when 

d b l t
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used as map symbols to 
show the geographic 
location of different water 
facies.
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These diagrams,

RADIAL DIAGRAMS

These diagrams, 
when plotted on 
a site map, 
clearly 
demonstrate 
decreasing 
concentrations 
of BTEX TCE
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of BTEX, TCE 
and DCE 
downgradient of 
the contaminant 
source.

COLLINS DIAGRAM
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Stiff Diagram

HCO3

Na+K

Ca

Mg

Cl

SO4

0 100 mg/l
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0 100 mg/l

Natural Ground Water
Na+K Cl

Stiff Diagrams

A h d
HCO3

Na K

Ca

Mg

Cl

SO4

HCO3

Na+K

Ca

Mg

Cl

SO4

Brine or Seawater

Arrowhead

Mr. "T"
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HCO3

Na+K

Ca

Mg

Cl

SO4

Ion-exchange
Mg SO4

Backwards
Check Mark
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STIFF DIAGRAM

Na++K+

C 2+

Ion concentrations in meq/L 
are plotted on the horizontal 
axis.

Ca2+

Mg2+

Cl-

HCO3
-

SO4
2-

Cations are plotted to the 
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80 70 60 50 40 30 20 10 0 10 20 30 40 50 meq/L

Cations                                                            Anions

p
left, anions to the right, of a 
vertical axis. 
The points are connected to 
form a polygon.

STIFF DIAGRAM
Ion concentrations in meq/L 
are plotted on the horizontal 
axis.

Cations meq/l Anions
15 10 5 5 10 15

Cl

HCO3+CO3

SO4Mg

Ca

Na+K

AD002

ClNa+K

Cations are plotted to the left, 
anions to the right, of a 
vertical axis. 
The data are plotted in four 
rows and the points are 
connected to form a polygon.
Advantage: each water type

HCO3+CO3

SO4Mg

Ca AD004

Cl

HCO3+CO3

SO4Mg

Ca

Na+K

AD005

Cl

HCO3+CO3

SO4Mg

Ca

Na+K

AD007

ClNa+K
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Advantage: each water type 
produces a distinct shape.
Disadvantage: each analysis 
requires its own plot; only a 
limited number of data can be 
shown on a single plot.

SO4Mg

HCO3+CO3

SO4Mg

Ca S97-3

Cl

HCO3+CO3

SO4Mg

Ca

Na+K

SP002

Cl

HCO3+CO3Ca

Na+K

SPNEW
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Ca

Meq/L

HCO3+CO3

TYPICAL STIFF DIAGRAM 

Mg

Na+K

Fe

SO4

Cl

NO3

Ca HCO3+CO3

Ground 
water in 
alluvium
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Ca

Mg

Na+K

Fe

HCO3+CO3

SO4

Cl

NO3

Ground 
water in 
limestone

PIPER DIAGRAMS
Consists of two triangles (one 
for cations and one for anions), 
and a central diamond-shaped 
figurefigure.
Cations are plotted on the Ca-
Mg-(Na + K) triangle as 
percentages.
Anions are plotted on the 
HCO3

--SO4
2--Cl- triangle as 

percentages.
Concentrations are in

Groundwater
Facies

Mg SO4
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Concentrations are in 
meq/L.
Points on the anion 
and cation diagrams 
are projected upward 
to where they 
intersect on the 
diamond.

Cations Anions

Ca Na + K HCO3 + CO3 Cl
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PIPER DIAGRAMS

ADVANTAGESADVANTAGES
• Many water analyses can be plotted on the same 

diagram.
• Can be used to classify waters.
• Can be used to identify mixing of waters.

DISADVANTAGE
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DISADVANTAGE
• Concentrations are renormalized. Cannot easily 

accommodate waters where other cations or anions 
may be significant.

Piper Diagrams
Given the following water analyses, present them on a Piper 
Diagram.

Ca2+ Mg2+ Na+ K+ HCO3
- CO3

2- SO4
2- Cl-

The first step is to find the percent of each cation and anion group 
as a percentage of the total.

mg/L 23 4.7 35 4.7 171 0 1 9.5

meq/L 1.15 0.39 1.52 0.12 2.8 0 0.02 0.27

Cations meq/L % of 
total

Anions meq/L % of total
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Ca2+ 1.15 36 Cl- 0.27 9

Mg2+ 0.39 12 SO4
2- 0.02 1

Na+ + K+ 1.64 52 CO3
2- +HCO3

- 2.80 90

Total 3.18 Total 3.09
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Piper Diagram Example
ion %

Ca2+ 36Ca 36

Mg2+ 12

Na+ + K+ 52

Cl- 9

SO4
2- 1
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HCO3
- + CO3

2- 90

Plotting on a Piper Diagram

Mg SO4
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Plotting on a 
Piper Diagram

Mg SO4

Sample 1
Sample 2
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Na+K HCO3 +CO3 ClCa Calcium (Ca) Chloride (Cl)
80 60 40 20 20 40 60 80

Groundwater Facies
Cations Anions
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Classification of Water
Ca-SO4 waters - typical of gypsum 

ground waters and mine drainage

Ca-HCO3 waters - typical of

Mg SO4

Mg Type SO4 Type

Ca HCO3 waters typical of 
shallow, fresh ground waters

Na-Cl waters - typical of 
marine and deep ancient 
ground waters

Na-HCO3 waters –
i l f d f h
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Na+K HCO3 +CO3 ClCa Calcium (Ca) Chloride (Cl)
80 60 40 20 20 40 60 80

Ca Type

g yp

Na K Type HCO3 Type Cl Type

typical of deeper fresh 
ground waters 
influenced by ion 
exchange

Classification
Grouping of waters on 
the Piper Diagram

Mg SO4

the Piper Diagram
suggests a common
composition and origin.
Red:  
Ca-Mg-SO4 
Yellow:
Ca-Mg-Na-Cl-SO4
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Piper Diagrams

80 80
0 10000

TDS - mg/l per inch

20

40

60 60

40

20

80 20 8020

Cl
+

SO4

Ca
+
Mg

3

0 10000
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20

40

60

80 60 40 20

80

60

40

20

20 40 60 80

Mg

Ca

Na
+
K

CO3+
HCO3

Cl

SO4

To Prepare a Piper Plot:

1. Convert mg/L to meq/L.1. Convert mg/L to meq/L.

2. Add cation meq/l together.
Add anion meq/L together.

3. Divide each cation meq/L by total cation meq/L.
Divide each anion meq/L by total anion meq/L.

4. Multiply results of step 3 by 100 to get % meq/L.
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4. Multiply results of step 3 by 100 to get % meq/L.

5. Plot the % cation meq/L on left ternary diagram; the
% anion meq/L on the right.

6. Extrapolate into diamond field.
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Water-type Associations

Ca-Mg-HCO3 Na-HCO3

Glacial Till
Crystalline Rocks
Carbonate Rocks

Ion-exchange
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Ca-SO4Na-Cl

Ocean water
Sedimentary Brines

Gypsiferous Rx
Sulfide Oxidation

The Four Major Groundwater Types

Cl Ca

Ca-SO4

+
SO4

Ca
+

Mg

Mg SO4

Na-ClCa-Mg-HCO3
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Ca Na

HCO3
Cl

Na-HCO3
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Mixing

Cl Ca
+

SO4

Ca
+
Mg

Mg SO4

TDS
Changes
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Ca Na

HCO3
Cl

80 80

Piper’s Classic Problem

Is the Contamination

20

40

60

80 80

60

40
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60

80 20 80
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Mg SO4

1
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0 5000

TDS - mg/l per inch 2

1

Is the Contamination 
From Seawater?

SW
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Cations Anions
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Ion-exchange

Na-Clay + Ca = Ca-Clay + 2Na
+2+
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Reaction--Ion Exchange 

Cl Ca Na exchanges for
+

SO4

Ca
+
Mg

Mg SO4

TDS
Does Not
Change

g
Ca with little mass
difference
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Ca Na

HCO3
Cl

Anions remain
effectively constant
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Sulfide Oxidation And Carbonate
Dissolution...

Oxidation    

FeS2 + 7/2 O2 + H2O = Fe2+ + 2H+ + 2SO4
2-

Dissolving Limestone
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2CaCO3 + 2H+ + 2SO4
2- = 2Ca2+ + 2HCO3

-

+ 2SO4
2-

Sulfate and Carbonate Dissolution

2CaCO3 + H2O + CO2 + CaSO4 =
2Ca2+ + 2HCO3

- + SO4
2-
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Sulfate Oxidation + Carbonate Dissolution or Gypsum
and Carbonate Dissolution

Cl Ca
+

SO4

Ca
+
Mg

Mg SO4

TDS
Increases
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Ca Na

HCO3
Cl

Cations remain
effectively constant

Let’s Look At Sulfide 
Reduction

SO4
2- + CH2O = H2S + 2HCO3

-
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Reaction--Sulfate Reduction

Cl Ca SO4 loss with
+

SO4

Ca
+
Mg

Mg SO4

TDS
Does Not
Change

SO4 loss with 
commensurate
HCO3 gain.
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Ca Na

HCO3
Cl

Cations remain
effectively constant

What Happens when...

• Native water in dolomite aquifer..
• Passes into gypsum layers..  
• Then reacts with ion-exchange clays in 

shales...
• Then discharges and mixes with brine...
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Cl
+

Ca
+

Limestone And Rain

+
SO4

+

Mg

Mg SO4

Ca-Mg-HCO3

9/23/2007 Dr. Mustafa Al Kuisi 167Cations Anions
Ca Na

HCO3
Cl

Cl
+

Ca
+

Ca-SO4

Passes into gypsum..

+
SO4

+

Mg

Mg SO4

Ca-Mg-HCO3
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Cl
+

Ca
+

Ca-SO4

Undergoes Ion Exchange..

+
SO4

+

Mg

Mg SO4

Na-ClCa-Mg-HCO3
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Mixes with brine:The Mark of 
Zorro!!!!

Cl
+

Ca
+

Ca-SO4

+
SO4

+

Mg

Mg SO4

Na-ClCa-Mg-HCO3
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SCHOELLER DIAGRAM
These semi-
logarithmic diagrams 
were developed to

1000
Conc.(meq/L)

were developed to 
represent major ion 
analyses in meq/l and 
to demonstrate 
different 
hydrochemical water 
types on the same 
diagram

100

10

1
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diagram. 
Actual sample 
concentrations are 
displayed and 
compared. K     Mg   Ca    Na     Cl   SO4 HCO3 NO3

0.1

0.01

Wells in limestone aquifer
The Schoeller diagram 
shows rather low salinity, 
Piper points at the origin 
and type of water (calcium-
bicarbonate), and STIFF 
identifies the water as 
purely Ca-HCO3. 
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