REDOX REACTIONS AND PROCESSES

Dr. Mustafa Al Kuisi
Assistance Prof. Environmental Hydrogeochemistry
University of Jordan
Department of Applied Geology and Environment

LEARNING OBJECTIVES

Define oxidation and reduction.

- See examples of the importance of redox reactions to aqueous geochemistry.
- Learn to balance redox reactions.

Define the variables Eh and pe.

- Learn how to calculate Eh from redox couples.
- Cation is a positively charged ion
- Anion is a negatively charged ion
- For many elements, the oxidation state is an important factor in determining their behavior in the natural environment.
- For example, Fe^{+2} is more soluble in water than Fe^{+3}
- Oxidation - a process involving loss of electrons.
- Reduction - a process involving gain of electrons.
- Reductant - a species that loses electrons.
- Oxidant - a species that gains electrons.
- Free electrons do not exist in solution. Any electron lost from one species in solution must be immediately gained by another.

$$
\mathrm{Ox}_{1}+\mathrm{Red}_{2} \leftrightarrow \mathrm{Red}_{1}+\mathrm{Ox}_{2}
$$

IMPORTANCE OF REDOX REACTIONS CONTROL OF METAL MOBILITY

- Some metals are more soluble (i.e., mobile) in one oxidation state than the other.
■ Example: $\mathrm{Cr}\left({ }^{+6}\right)$ is more soluble (and more toxic) than $\mathrm{Cr}\left({ }^{+3}\right)$.

$$
\begin{gathered}
8 \mathrm{HCr}^{(\mathrm{VII}) \mathrm{O}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{~S}^{(-\mathrm{II})}(\mathrm{g})+2 \mathrm{H}^{+}} \\
\leftrightarrow 4 \mathrm{Cr}^{(\mathrm{IV})}{ }_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{~S}^{(\mathrm{IV})} \mathrm{O}_{4}{ }^{2-}+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
\end{gathered}
$$

■ Example: $\mathbf{U}\left(^{+6}\right)$ is more soluble than $\mathbf{U}\left({ }^{+4}\right)$.

$$
\begin{gathered}
4 \mathrm{U}^{(\mathrm{VI})} \mathrm{O}_{2}^{2+}+\mathrm{C}^{(-\mathrm{VV})} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
\leftrightarrow 4 \mathrm{U}^{(\mathrm{IV})} \mathrm{O}_{2}+\mathrm{HCO}_{3}^{-}+9 \mathrm{H}^{+}
\end{gathered}
$$

IMPORTANCE OF REDOX REACTIONS -

 BIODEGRADATION- Organisms can degrade contaminants by facilitating their oxidation or reduction.
- Example: Oxidation of vinyl chloride $4 \mathrm{C}^{(-1)} \mathrm{H}_{2}=\mathrm{C}^{(-1)} \mathrm{HCl}+5 \mathrm{~N}^{(\mathrm{V}) \mathrm{O}_{3}}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+6 \mathrm{H}^{+} \leftrightarrow$ $8 \mathrm{C}^{(\mathrm{IV})} \mathrm{O}_{2}+5 \mathrm{~N}^{(-\mathrm{III})} \mathrm{H}_{4}^{+}+4 \mathrm{Cl}^{-}$
- Example: Reduction of carbon tetrachloride.

$$
\mathrm{C}^{(\mathrm{IV})} \mathrm{Cl}_{4}+\mathrm{H}^{(0)}{ }_{2} \leftrightarrow \mathrm{C}^{(\mathrm{II})} \mathrm{HCl}_{3}+\mathrm{Cl}^{-}+\mathrm{H}^{+}
$$

IMPORTANCE OF REDOX REACTIONS ACID MINE DRAINAGE

- Oxidation of metal sulfides minerals usually results in acid generation.
■ Example: Oxidation of pyrite.

$$
\begin{gathered}
4 \mathrm{Fe}^{(\mathrm{II})} \mathrm{S}^{(-\mathrm{I})}{ }_{2}+15 \mathrm{O}^{(0)}{ }_{2}+14 \mathrm{H}_{2} \mathrm{O} \\
\leftrightarrow
\end{gathered} 4 \mathrm{Fe}^{(\mathrm{III})}(\mathrm{OH})_{3}+8 \mathrm{~S}^{(\mathrm{VII})} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+}
$$

- Example: Oxidation of arsenopyrite.

$$
2 \mathrm{Fe}^{(\mathrm{II})} \mathrm{As}^{(-1)} \mathrm{S}^{(-1)}+7 \mathrm{O}^{(0)}{ }_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
\leftrightarrow 2 \mathrm{Fe}^{(I I I)}(\mathrm{OH})_{3}(\mathrm{~s})+2 \mathrm{HAs}^{(\mathrm{V})} \mathrm{O}_{3}{ }^{0}+2 \mathrm{~S}^{(\mathrm{VI})} \mathrm{O}_{4}{ }^{2-}
$$

$$
+4 \mathrm{H}^{+}
$$

BALANCING REDOX REACTIONS

EXAMPLE 1

$\mathrm{Fe}+\mathrm{Cl}_{2} \leftrightarrow \mathrm{Fe}^{3+}+\mathrm{Cl}^{-}$
Step 1: Assign valences.

$$
\mathrm{Fe}^{(0)}+\mathrm{Cl}_{2}{ }^{(0)} \leftrightarrow \mathrm{Fe}^{3+}+\mathrm{Cl}^{-}
$$

Step 2: Determine number of electrons lost or gained by reactants.

$$
\begin{aligned}
& \mathrm{Fe}^{(0)}+\mathrm{Cl}_{2}{ }_{2}^{(0)} \leftrightarrow \mathrm{Fe}^{3+}+\mathrm{Cl}^{-} \\
& \downarrow \\
& 3 \mathrm{e}^{-} \quad 2 \mathrm{e}^{-}
\end{aligned}
$$

Step 3: Cross multiply.

$$
2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \leftrightarrow 2 \mathrm{Fe}^{3+}+6 \mathrm{Cl}^{-}
$$

- In the next several slides, we are going to learn a systematic method of balancing overall redox reactions, i.e., reactions in which both oxidation and reduction are taking place simultaneously. It is possible to balance relatively simple reactions by inspection or trial and error. However, without the systematic approach, it is almost impossible to balance some of the more complicated redox equations correctly. I therefore highly recommend you master this approach and use it routinely.

The systematic approach involves a series of steps:
Step 1 - This step involves assigning the valence or oxidation state to each of the reactants and products. We use the rules for assigning valences that were given in Lecture 1. In this case, Fe and Cl_{2}, are elements, and so their oxidation states are 0, and the oxidation states for Fe^{3+} and Cl^{-}are simply equal to their ionic charge.
Step 2 - This step required that we determine the number of electrons lost or gained by each reactant. The oxidation state of Fe changes from 0 to III, so 3 electrons are lost. On the other hand, the Cl_{2} molecule gains two electrons as it is converted to two Cl^{-}ions.
Step 3 - We now cross multiply. This involves taking the number of electrons lost by Fe (i.e., 3), and multiplying this number times both Cl_{2} and Cl^{-}. We also have to account for the fact that each Cl_{2} molecule gives rise to $2 \mathrm{Cl}^{-}$, so $3 \mathrm{Cl}_{2}$ molecules will yield $6 \mathrm{Cl}^{\text {. }}$. Finally, we multiply the number of electrons gained by Cl_{2} (i.e., 2) times each of the Fe species, for the result shown. A quick shows that the reaction is now balanced with respect to Fe atoms (2 on each side), Cl atoms (6 on each side) and net charge (zero on each side.

EXAMPLE 2

$\mathrm{FeAsS}+\mathrm{O}_{2} \leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{HAsO}_{3}{ }^{0}+\mathrm{SO}_{4}{ }^{2-}$

$14 e^{-} \quad 4 e^{-}$

$$
\begin{gathered}
4 \mathrm{FeAsS}+14 \mathrm{O}_{2} \leftrightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+4 \mathrm{HAsO}_{3}{ }^{0}+4 \mathrm{SO}_{4}{ }^{2-} \\
2 \mathrm{FeAsS}+7 \mathrm{O}_{2} \leftrightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+2 \mathrm{HAsO}_{3}{ }^{0}+2 \mathrm{SO}_{4}{ }^{2-} \\
2 \mathrm{FeAsS}+7 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \\
2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+2 \mathrm{HAsO}_{3}{ }^{0}+2 \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}
\end{gathered}
$$

- The previous example could have easily been balanced by trial and error. Here is an example where the systematic approach is essential.
Step 1 - Assign valences. On the right hand side of the equation, the valence of oxygen is 0, because it is the elemental form. On the left hand side, the valence of oxygen is always -II. Assigning valences to the atoms in FeAsS (arsenopyrite) is a little harder. We start by noting that iron can only have oxidation states of 0, II and III. Arsenic and sulfur can have many oxidation states, but if we assume that Fe has a valence of II, then As and S could each have a valence of $-I$, which is a possible state for both (many periodic tables list the possible oxidation states of each element). For the right-hand side of the reaction, if we assume O and H each have a valence of -2 and +1 , respectively, the oxidation states for Fe , As and S must be as shown.
Step 2 - Determine electrons lost and gained. In this reaction, the Fe in FeAsS loses one electron, the As loses 6, and the S loses 7 electrons. Thus, each molecule of FeAsS loses 14 electrons. On the other hand, each O atom in O_{2} gains one electron, but there are two O atoms. Thus, each O_{2} molecule loses 4 electrons.
Step 3 - Cross multiply. We multiply $\mathrm{FeAsS}, \mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{HAsO}_{3}{ }^{0}$ and $\mathrm{SO}_{4}{ }^{2-}$ each by 4 . We then multiply O_{2} by 14. Once this is done, we can simply by factoring out the common factor 2.
- At this point, this more complex reaction still is not completely balanced. Neither the oxygens, the hydrogens nor the charges are balanced. We now follow two additional rules: 1) first balance the oxygens by putting the appropriate number of water molecules on the required side of the reaction (in this case, $6 \mathrm{H}_{2} \mathrm{O}$'s on the left); 2) next balance the hydrogen atoms using H^{+}. If everything has been done correctly, the charge will now balance.
- Here is a final example of balancing a complicated reaction.

Step 1 - The valences of the atoms in $\mathrm{O}_{2}, \mathrm{Fe}(\mathrm{OH})_{3}$ and $\mathrm{SO}_{4}{ }^{2-}$ are the same as in slide 8 . Once again, pyrite is a bit tricky, but we assign valences in a manner similar to that for FeAsS.
Step 2 - Each Fe in FeS_{2} loses one electron, and each S loses 7 electrons. The total number of electrons lost from FeS_{2} is therefore 15. As before, each molecule of O_{2} gains 4 electrons.
Step 3 - Multiply O_{2} by 15 and $\mathrm{FeS}_{2}, \mathrm{Fe}(\mathrm{OH})_{3}$ and $\mathrm{SO}_{4}{ }^{2-}$ each by 4. We also have to multiply $\mathrm{SO}_{4}{ }^{2-}$ by an additional factor of 2 to account for the fact that pyrite provides two sulfur atoms.

- The problem is finished by first balancing oxygens using water, then hydrogens using H^{+}. Because we did everything correctly, the charge balances as well. In general, whenever we get to step three and the equation is not balanced, we can use $\mathrm{H}_{2} \mathrm{O}$ and H^{+}, but NO OTHER SPECIES THAT WERE NOT ORIGINALLY PART OF THE REACTION.
- The following things CAN NEVER, EVER, EVER be used to balance the overall redox reaction after step 3: $\mathrm{OH}^{-}, \mathrm{H}_{2}$, and electrons. Also, if O_{2} is not part of the initial reaction, we cannot add it later on. Electrons can be used to balance half-reactions (see next three slides), but NOT overall redox reactions. That is the point of a balanced, overall redox reaction; all the electrons donated by one reactant are accepted by another reactant, and electrons never appear explicitly.
- If you finish step 3, and it seems like you need something other than $\mathrm{H}_{2} \mathrm{O}$ or H^{+}to balance the equations, YOU DID SOMETHING WRONG in steps 13!!!

HALF REACTIONS - I

- Redox reactions such as those shown above can be broken down into half reactions; one representing oxidation and the other representing reduction.
Example 1:

$2 \mathrm{Fe} \leftrightarrow 2 \mathrm{Fe}^{3+}+6 \mathrm{e}^{-}$	(oxidation)
$3 \mathrm{Cl}_{2}^{0}+6 \mathrm{e}^{-} \leftrightarrow 6 \mathrm{Cl}^{-}$	(reduction)
$2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \leftrightarrow 2 \mathrm{Fe}^{3+}+6 \mathrm{Cl}^{-}$	(overall)

Overall redox reactions always can be broken down into two half reactions that explicitly show the transfer of electrons. One of the half reactions will have electrons on the right-hand side, and therefore it represents the oxidation half of the overall reaction. The other half reaction will have electrons on the left-hand side, representing the reduction half of the overall reaction. When the two half reactions are summed together, the electrons will completely cancel, and the overall redox reaction is recovered.

- Because free electrons do not exist in aqueous solution, half reactions do not correspond to any real reaction. However, it is often useful to write these half reactions because they help us see more clearly what is being oxidized and what is being reduced. Also, later on we will see that half reactions are useful in defining measures of redox potential (i.e., pe and Eh) and in the construction of Eh-pH diagrams.
- In the following two slides, the two other overall redox reactions that we balanced are broken down in terms of their half reactions.

HALF REACTIONS II

- Example 2

> Oxidation $2 \mathrm{FeAsS}+2 \mathrm{OH}_{2} \mathrm{O}(\mathrm{I})$ $\leftrightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+2 \mathrm{HAsO}_{3}{ }^{0}+2 \mathrm{SO}_{4}{ }^{2-}+28 \mathrm{e}^{-}+32 \mathrm{H}^{+}$ Reduction $^{7 \mathrm{O}_{2}+28 \mathrm{H}^{+}+28 \mathrm{e}^{-} \leftrightarrow 14 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})}$ Overall $2 \mathrm{FeAsS}+7 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ $\leftrightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+2 \mathrm{HAsO}_{3}{ }^{0}+2 \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}$

HALF REACTIONS III

Example 3
Oxidation
$4 \mathrm{FeS}_{2}+44 \mathrm{H}_{2} \mathrm{O} \leftrightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}+8 \mathrm{SO}_{4}{ }^{2-}+76 \mathrm{H}^{+}+$ 60e-

Reduction

$15 \mathrm{O}_{2}+60 \mathrm{H}^{+}+60 \mathrm{e}^{-} \leftrightarrow 30 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Overall
$4 \mathrm{FeS}_{2}+15 \mathrm{O}_{2}+14 \mathrm{H}_{2} \mathrm{O} \leftrightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}+8 \mathrm{SO}_{4}{ }^{2-}+$ $16 \mathrm{H}^{+}$

ELECTRON ACTIVITY

- Although no free electrons exist in solution, it is useful to define a quantity called the electron activity:

$$
p e=-\log a_{e^{-}}
$$

- The pe indicates the tendency of a solution to donate or accept a proton.
- If pe is low, there is a strong tendency for the solution to donate protons - the solution is oxidizing.
- If pe is high, there is a strong tendency for the solution to accept protons - the solution is reducing.

THE pe OF A HALF REACTION

Consider the half reaction
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \leftrightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
The equilibrium constant is

$$
K=\frac{a_{M n^{2+}}}{a_{H^{+}}^{4} a_{e^{-}}^{2}}
$$

Solving for the electron activity

$$
a_{e^{-}}=\left(\frac{a_{M n^{2+}}}{K a_{H^{+}}^{4}}\right)^{1 / 2}
$$

Taking the logarithm of both sides of the above equation and multiplying by -1 we obtain

$$
-\log a_{e^{-}}=-1 / 2 \log \left(\frac{a_{M^{2+}}}{a_{H^{+}}^{4}}\right)+1 / 2 \log K
$$

Or

$$
p e=-1 / 2 \log \left(\frac{a_{M n^{2+}}}{a_{H^{+}}^{4}}\right)+1 / 2 \log K
$$

We can calculate K from

$$
\begin{aligned}
\log K & =\frac{-\Delta G_{r}^{o}}{2.303 R T} \\
& =\frac{-\left(\Delta G_{f-\mathrm{Mn}^{2+}}^{o}+2 \Delta G_{f-\mathrm{H}_{2} \mathrm{O}}^{o}-\Delta G_{f-\mathrm{MnO}_{2}}^{o}\right)}{2.303 R T} \\
& =\frac{-(-228.1+2(-237.1)-(-453.1))}{2.303\left(8.314 \times 10^{-3}\right)(298.15)}=43.65
\end{aligned}
$$

SO

$$
p e=-1 / 2 \log \left(\frac{a_{M n^{++}}}{a_{H^{+}}^{4}}\right)+21.83
$$

WE NEED A REFERENCE POINT!

Values of pe are meaningless without a point of reference with which to compare. Such a point is provided by the following reaction:

$$
1 / 2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{H}^{+}+\mathrm{e}^{-}
$$

By convention

$$
\Delta G_{f-H^{+}}^{o}=\Delta G_{f-H_{2}}^{o}=\Delta G_{f-e^{-}}^{o}=0
$$

so $K=1$.

$$
K=\frac{a_{H^{+}} a_{e^{-}}}{p_{H_{2}}^{1 / 2}}=1
$$

Taking the logarithms of both sides we obtain

$$
\log a_{e^{-}}=\log K+1 / 2 \log p_{H_{2}}-\log a_{H^{+}}
$$

or

$$
p e=-\log K-1 / 2 \log p_{H_{2}}+\log a_{H^{+}}
$$

If $a_{\mathrm{H}^{+}}=1(\mathrm{pH}=0)$ and $p_{\mathrm{H}_{2}}=1$, then $\mathrm{pe}=0$. This makes the half reaction a reference for pe much like sea level is for elevation.
The hydrogen half reaction can be added to the previous reaction to get:

$$
\begin{gathered}
\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}+\mathrm{H}_{2} \\
\leftrightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}
\end{gathered}
$$

$$
\mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{H}^{+}+\mathrm{H}_{2} \leftrightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
\log K=\frac{-\Delta G_{r}^{o}}{2.303 R T}
$$

$$
=\frac{-\left(\Delta G_{f-M n^{2+}}^{o}+2 \Delta G_{f-\mathrm{H}_{2} \mathrm{O}}^{o}-\Delta G_{f-M n O_{2}}^{o}-2 \Delta G_{f-\mathrm{H}^{+}}^{o}-\Delta G_{f-\mathrm{H}_{2}}^{o}\right)}{2.303 R T}
$$

$$
=\frac{-\left(\Delta G_{f-M n^{2+}}^{o}+2 \Delta G_{f-\mathrm{H}_{2} \mathrm{O}}^{o}-\Delta G_{f-\mathrm{MnO}_{2}}^{o}\right)}{2.303 R T}
$$

This is the same equation we obtained for the Mn half reaction by itself. Thus, adding the hydrogen half reaction does not change numerically the $\log \mathrm{K}$ of the reaction.

THE STANDARD HYDROGEN ELECTRODE

If a cell were set up in the laboratory based on the half reaction

$$
1 / 2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{H}^{+}+\mathrm{e}^{-}
$$

and the conditions $a_{\mathrm{H}^{+}}=1(\mathrm{pH}=0)$ and $p_{\mathrm{H}_{2}}=1$, it would be called the standard hydrogen electrode (SHE).
If conditions are constant in the SHE, no reaction occurs, but if we connect it to another cell containing a different solution, electrons may flow and a reaction may occur.

STANDARD HYDROGEN ELECTRODE

$$
\mathrm{H}_{2}=1 \mathrm{~atm}
$$

$1 / 2 \mathbf{H}_{\mathbf{2}}(\mathbf{g}) \leftrightarrow \mathbf{H}^{+}+\mathbf{e}^{-}$

$$
a_{\mathrm{H}^{+}}=1
$$

Figure 4-1. Diagram of a Zn -Cu electrochemical cell. Zn and Cu metal electrodes are immersed in a CuSO_{4} solution. Electrons flow from left to right and a potential is recorded by the voltmeter. With time, this potential decreases to zero, the concentration of Zn^{2+} increases in the left-hand half of the cell, and the concentration of Cu^{2+} decreases in the right-hand half of the cell. After Faure (1998).

ELECTROCHEMICAL CELL

$1 / 2 \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{H}^{+}+\mathbf{e}^{-}$
$\mathrm{Fe}^{3+}+\mathbf{e}^{-} \leftrightarrow \mathrm{Fe}^{\mathbf{2 +}}$

ELECTROCHEMICAL CELL

We can calculate the pe of the cell on the right with respect to SHE using:

$$
p e=-\log \left(\frac{a_{\mathrm{Fe}^{2+}}}{a_{\mathrm{Fe}^{3+}}}\right)+12.8
$$

If the activities of both iron species are 1, pe= 12.8. If $a_{\mathrm{Fe}^{2+}} / a_{\mathrm{Fe}^{3+}}=0.05$, then

$$
p e=-\log (0.05)+12.8=14.1
$$

The electrochemical cell shown gives us a method of measuring the redox potential of an unknown solution vs. SHE.

DEFINITION OF Eh

Eh - the potential of a solution relative to the SHE. Both pe and Eh measure essentially the same thing. They may be converted via the relationship:

$$
p e=\frac{n \mathfrak{I} E h}{2.303 R T}
$$

Where $\mathfrak{I}=96.42 \mathrm{~kJ} \mathrm{volt}^{-1} \mathrm{eq}^{-1}$ (Faraday's constant).
At $25^{\circ} \mathrm{C}$, this becomes $p e=16.9 E h$

Or

$$
E h=0.059 p e
$$

CALCULATING Eh FROM A REDOX COUPLE

Consider the half reaction:

$$
\mathrm{NO}_{3}^{-}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-} \leftrightarrow \mathrm{NH}_{4}^{+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

We can use this reaction, together with the Nernst equation to calculate the Eh, if the activities of $\mathrm{H}^{+}, \mathrm{NO}_{3}{ }^{-}$, and $\mathrm{NH}_{4}{ }^{+}$are known. The general Nernst equation is

$$
E h=E^{0}-\frac{2.303 R T}{n \mathfrak{I}} \log (I A P)
$$

The Nernst equation for this reaction at $25^{\circ} \mathrm{C}$ is

$$
E h=E^{0}-\frac{0.0592}{8} \log \left(\frac{a_{\mathrm{NH}_{4}^{+}}}{a_{\mathrm{NO}_{3}^{-}} a_{\mathrm{H}^{+}}^{10}}\right)
$$

Let's assume that the concentrations of $\mathrm{NO}_{3}{ }^{-}$ and $\mathrm{NH}_{4}{ }^{+}$have been measured to be $10^{-5} \mathrm{M}$ and $3 \times 10^{-7} \mathrm{M}$, respectively, and $\mathrm{pH}=5$. What are the Eh and pe of this water?
First, we must make use of the relationship

$$
E^{0}=\frac{-\Delta G_{r}^{o}}{n \mathfrak{I}}
$$

For the reaction of interest

$$
\begin{aligned}
\Delta_{\mathrm{r}} \mathbf{G}^{\circ}= & \mathbf{3}(-237.1)+(-79.4)-(-110.8) \\
& =-679.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
E^{0}= & \frac{679.9}{(8)(96.42)}=0.88 \mathrm{volts}
\end{aligned}
$$

The Nernst equation now becomes

$$
E h=0.88-\frac{0.0592}{8} \log \left(\frac{a_{\mathrm{NH}_{4}^{+}}}{a_{\mathrm{NO}_{3}} a_{\mathrm{H}^{+}}^{10}}\right)
$$

substituting the known concentrations
(neglecting activity coefficients)
$E h=0.88-\frac{0.0592}{8} \log \left(\frac{3 \times 10^{-7}}{\left(10^{-5}\right)\left(10^{-5}\right)^{10}}\right)=0.521$ volts
and

$$
p e=16.9 E h=16.9(0.521)=8.81
$$

A SECOND EXAMPLE

Using the half reaction

$$
\mathrm{HCO}_{3}^{-}+9 \mathrm{H}^{+}+8 \mathrm{e}^{-} \leftrightarrow \mathrm{CH}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$ and the fact that for a ground water, $\mathrm{pH}=$

8.3 and the concentrations of $\mathrm{HCO}_{3}^{-{ }^{-}}$and $\mathrm{CH}_{4}(\mathrm{aq})$ are $10^{-3} \mathrm{M}$ and $5 \times 10^{-6} \mathrm{M}$, respectively, calculate Eh and pe at $25^{\circ} \mathrm{C}$. The Nernst equation for this problem is:

$$
E h=E^{0}-\frac{0.0592}{8} \log \left(\frac{a_{\mathrm{CH}_{4}^{0}}}{a_{\mathrm{HCO}_{3}^{-}} a_{\mathrm{H}^{+}}^{9}}\right)
$$

Now we calculate

$$
\begin{gathered}
\left.\Delta_{\mathrm{r}} \mathbf{G}^{\circ}=\mathbf{3 (- 2 3 7 . 1}\right)+(\mathbf{- 3 4 . 3 9)} \mathbf{- (- 5 8 6 . 8)} \\
\mathbf{=} \mathbf{- 1 5 8 . 8 9 \mathrm { kJ } \mathrm { mol } ^ { - 1 }} \\
E^{0}=\frac{158.89}{(8)(96.42)}=0.206 \text { volts } \\
E h=0.206-\frac{0.0592}{8} \log \left(\frac{a_{C H_{4}^{0}}}{a_{\mathrm{HCO}_{3}^{-}} a_{H^{+}}^{9}}\right) \\
E h=0.208-\frac{0.0592}{8} \log \left(\frac{5 \times 10^{-6}}{\left(10^{-3}\right)\left(10^{-8.3}\right)^{9}}\right)=-0.328 \text { volts } \\
p e=16.9 E h=16.9(-0.328)=-5.54
\end{gathered}
$$

TURNING THE PROBLEM AROUND

A mine water has an $E h=0.675$ volts and $\left(\mathrm{Cu}_{\mathrm{T}}\right)=10^{-4} \mathrm{M}$. Calculate the concentrations of copper present as Cu^{+} and Cu^{2+}.
We have two unknowns (the concentrations of Cu^{+}and Cu^{2+}) and two contraints:

1) the Nernst equation

$$
\begin{gathered}
\mathbf{C u}^{2+}+\mathbf{e}^{-} \leftrightarrow \mathbf{C u}^{+} \\
E h=E^{0}-\frac{0.0592}{1} \log \left(\frac{a_{C u^{+}}}{a_{C u^{2+}}}\right)=E^{0}-0.0592 \log \left(\frac{m_{C^{+}}}{m_{C u^{2+}}}\right)
\end{gathered}
$$

2) Mass balance $\left(C u_{T}\right)=10^{-4}=m_{C u^{2+}}+m_{C u^{+}}$ Rearranging the mass-balance we get

$$
\begin{gathered}
m_{\mathrm{Cu}^{+}}=10^{-4}-m_{\mathrm{Cu}^{2+}} \\
E h=E^{0}-0.0592 \log \left(\frac{10^{-4}-m_{\mathrm{Cu}^{2+}}}{m_{\mathrm{Cu}^{2+}}}\right)
\end{gathered}
$$

Now we calculate $\Delta G_{r}{ }^{\circ}$ and E^{0}

$$
\begin{gathered}
\Delta \mathbf{G}_{\mathbf{r}}^{\circ}=\mathbf{5 0 . 0}-(\mathbf{6 5 . 5})=\mathbf{- 1 5 . 5} \mathrm{kJ} \mathrm{~mol}^{-\mathbf{1}} \\
E^{0}=\frac{15.5}{(1)(96.42)}=0.161 \mathrm{volts}
\end{gathered}
$$

The Nernst equation is now

$$
0.675=0.161-0.0592 \log \left(\frac{10^{-4}-m_{\mathrm{Cu}^{2+}}}{m_{\mathrm{Cu}^{2+}}}\right)
$$

$$
\log \left(\frac{10^{-4}-m_{\mathrm{Cu}^{2+}}}{m_{\mathrm{Cu}^{2+}}}\right)=-8.682
$$

$$
10^{-4}-m_{\mathrm{Cu}^{2+}}=2.078 \times 10^{-9} m_{\mathrm{Cu}^{2+}}
$$

$$
m_{C u^{2+}} \approx 10^{-4} \mathrm{M}
$$

so
and

$$
9 / 21 / 2007
$$

$$
\begin{aligned}
m_{C u^{+}} & =2.078 \times 10^{-9} \mathrm{~m}_{\mathrm{Cu}^{2+}} \\
& =\left(2.078 \times 10^{-9}\right)\left(10^{-4}\right)=2.078 \times 10^{-13} \mathrm{M}_{38}
\end{aligned}
$$

LEARNING OBJECTIVES

■ Learn to construct and use pe-pH (Eh-pH) diagrams.

pe-pH (Eh-pH) DIAGRAMS

- Diagrams that display relationships between oxidized and reduced species and phases.
- They are a type of activity-activity diagram!
- Useful to depict general relationships, but difficulties of using field-measured pe (Eh) values should be kept in mind.
- Constructed by writing half reactions representing the boundaries between ${ }_{921}$ species/phases.

UPPER STABILITY LIMIT OF WATER (pe-pH)

The following half reaction defines the conditions under which water is oxidized to oxygen:

$$
1 / 2 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}+2 \mathrm{H}^{+} \leftrightarrow \mathrm{H}_{2} \mathrm{O}
$$

The equilibrium constant for this reaction is given by

$$
K=\frac{1}{p_{O_{2}}^{1 / 2} a_{e^{-}}^{2} a_{H^{+}}^{2}}
$$

$$
\begin{gathered}
\log K=-1 / 2 \log p_{\mathrm{O}_{2}}-2 \log a_{e^{-}}-2 \log a_{H^{+}} \\
\log K=-1 / 2 \log p_{\mathrm{O}_{2}}+2 p e+2 p H
\end{gathered}
$$

Solving for pe we get

$$
p e=1 / 2 \log K+1 / 4 \log p_{O_{2}}-p H
$$

This equation contains three variables, so it cannot be plotted on a two-dimensional diagram without making some assumption about $\mathrm{p}_{\mathrm{O}_{2}}$. We assume that $\mathrm{p}_{\mathrm{o}_{2}}=1 \mathrm{~atm}$. This results in

$$
p e=1 / 2 \log K-p H
$$

We next calculate log K using

$$
\Delta G_{r}^{\circ}=-237.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\log K=\frac{237,100 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=41.53$

$$
p e=20.77-p H
$$

LOWER STABILITY LIMIT OF WATER (pe-pH)

At some low pe, water will be reduced to hydrogen by the reaction

$$
\begin{gathered}
\mathbf{H}^{+}+\mathbf{e}^{-} \leftrightarrow \mathbf{1} / \mathbf{2} \mathbf{H}_{\mathbf{2}}(\mathbf{g}) \\
K=\frac{p_{\mathrm{H}_{2}}^{1 / 2}}{a_{e^{-}} a_{H^{+}}} \\
\log K=-1 / 2 \log p_{\mathrm{H}_{2}}+p e+p H
\end{gathered}
$$

We set $\mathbf{p}_{\mathrm{H}_{2}}=1 \mathrm{~atm}$. Also, $\Delta \mathbf{G}_{\mathrm{r}}{ }^{\circ}=0$, so $\log \mathrm{K}=0$.

$$
p e=-p H
$$

A pe-pH diagram showing the stability limits of water. At conditions above the top dashed line, water is oxidized to O_{2}; at conditions below the bottom dashed line, water is reduced to H_{2}. No natural water can persist outside these stability limits for any length of time.

UPPER STABILITY LIMIT OF WATER (Eh-pH)

To determine the upper limit on an Eh-pH diagram, we start with the same reaction

$$
1 / 2 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}+2 \mathrm{H}^{+} \leftrightarrow \mathrm{H}_{2} \mathrm{O}
$$ but now we employ the Nernst eq.

$$
\begin{aligned}
& E h=E^{0}-\frac{0.0592}{n} \log \frac{1}{p_{O_{2}}^{1 / 2} a_{H^{+}}^{2}} \\
& E h=E^{0}-\frac{0.0592}{2} \log \frac{1}{p_{O_{2}}^{1 / 2} a_{H^{+}}^{2}}
\end{aligned}
$$

$$
\begin{gathered}
E^{0}=\frac{-\Delta G_{r}^{0}}{n \mathfrak{I}}=\frac{-(-237.1)}{(2)(96.42)}=1.23 \text { volts } \\
E h=1.23+0.0296 \log p_{O_{2}}^{1 / 2} a_{H^{+}}^{2} \\
E h=1.23+0.0148 \log p_{O_{2}}-0.0592 p H
\end{gathered}
$$

As for the pe-pH diagram, we assume that $\mathrm{p}_{\mathrm{o}_{2}}=1 \mathrm{~atm}$. This results in

$$
E h=1.23-0.0592 p H
$$

This yields a line with slope of $\mathbf{- 0 . 0 5 9 2}$.

LOWER STABILITY LIMIT OF WATER (Eh-pH)
Starting with

$$
\mathrm{H}^{+}+\mathrm{e}^{-} \leftrightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})
$$

we write the Nernst equation

$$
E h=E^{0}-\frac{0.0592}{1} \log \frac{p_{H_{2}}^{1 / 2}}{a_{H^{+}}}
$$

We set $\mathrm{p}_{\mathrm{H}_{2}}=1 \mathrm{~atm}$. Also, $\Delta \mathrm{G}_{\mathrm{r}}{ }^{\circ}=0$, so $\mathrm{E}^{0}=$
0 . Thus, we have

$$
E h=-0.0592 p H
$$

$\mathrm{Fe}-\mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$ SYSTEM

Species $\quad \Delta G_{r}{ }^{\circ}\left(k J \mathrm{~mol}^{-1}\right) \quad$ Species $\quad \Delta G_{r}{ }^{\circ}\left(\mathrm{kJ} \mathrm{mol}{ }^{-1}\right)$

Fe^{2+}	-90.0	$\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$	-486.5
Fe^{3+}	-16.7	$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$	-696.5
$\mathrm{H}_{2} \mathrm{O}$	-237.1		

$\mathrm{Fe}(\mathrm{OH})_{3} / \mathrm{Fe}(\mathrm{OH})_{2} \mathrm{BOUNDARY}$

First we write a reaction with one phase on each side, and using only $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$and e^{-}to balance, as necessary
$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{e}^{-}+\mathrm{H}^{+} \leftrightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Next we write the mass-action expression for the reaction

$$
K=\frac{1}{a_{e^{-}} a_{H^{+}}}
$$

Taking the logarithms of both sides and rearranging we get

$$
\log K=-\log a_{e^{-}}-\log a_{H^{+}}=p e+p H
$$

And then $\quad p e=\log K-p H$
Next, we calculate $\Delta_{\mathrm{r}} \mathrm{G}^{\circ}$ and $\log \mathrm{K}$.

$$
\begin{gathered}
\Delta \mathbf{G}_{r}^{\circ}=\Delta \mathbf{G}_{\mathrm{f}}^{\circ}{ }^{\circ} \mathrm{Fe}(\mathrm{OH})_{2}+\Delta \mathbf{G}_{\mathrm{f} \mathrm{H}_{2} \mathrm{O}}^{\circ}-\Delta \mathbf{G}_{\mathrm{f}}^{\circ}{ }^{\circ} \mathrm{Fe}(\mathrm{OH})_{3} \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=(-486.5)+(-237.1)-(-696.5) \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=-27.1 \mathrm{~kJ} \mathrm{~mol}
\end{gathered}
$$

$$
\log K=\frac{27,100 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=4.75
$$

So now we have $p e=4.75-p H$
This is a line with slope -1 and intercept 4.75.

Our first Fe boundary is shown plotted here. This boundary will surely intersect another boundary and be truncated, but at this point we don't know where this intersection will occur. So for now, the boundary is drawn in lightly and is shown stretching across the entire Eh-pH diagram.

$\mathrm{Fe}(\mathrm{OH})_{2} / \mathrm{Fe}^{2+}$ BOUNDARY

Again we write a balanced reaction

$$
\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+} \leftrightarrow \mathrm{Fe}^{2+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Note that, no electrons are required to balance this reaction. The mass-action expression is:

$$
\begin{gathered}
K=\frac{a_{\mathrm{Fe}^{2+}}}{a_{\mathrm{H}^{+}}^{2}} \\
\log K=-\log a_{\mathrm{Fe}^{2+}}+2 p H \\
p H=1 / 2 \log K-1 / 2 \log a_{\mathrm{Fe}^{2+}}
\end{gathered}
$$

$$
\begin{gathered}
\Delta \mathbf{G}_{r}^{\circ}=\Delta G_{f}^{\circ}{ }_{\mathrm{Fe}}{ }^{2+}+2 \Delta \mathbf{G}_{f}^{\circ} \mathrm{H}_{2} \mathrm{O}-\Delta G_{\mathrm{f}}^{\circ} \mathrm{Fe}(\mathrm{OH})_{2} \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=(-90.0)+2(-237.1)-(-486.5) \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=-77.7 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

$$
\begin{gathered}
\log K=\frac{77,700 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=13.61 \\
p H=1 / 2(13.61)-1 / 2 \log a_{\mathrm{Fe}^{2+}}=6.81-1 / 2 \log a_{\mathrm{Fe}^{2+}}
\end{gathered}
$$

To plot this boundary, we need to assume a value for $\Sigma \mathrm{Fe} \approx \mathrm{a}_{\mathrm{Fe}^{2+}} \approx \boldsymbol{m}_{\mathrm{Fe}^{2+.}}$. This choice is arbitrary - here we choose $\Sigma \mathrm{Fe}=10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$. Now we have

$$
p H=6.81-1 / 2(-6)=9.81
$$

This diagram illustrates the plotting of the second boundary required for this diagram. Note that the portion of the $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$ $/ \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$ boundary from about pH 10 to pH 0 was erased as it is metastable. Also, the portion of the Fe^{2+} $/ \mathrm{Fe}(\mathrm{OH})_{2}$ boundary at high pe is also metastable and has been erased. It is clear that the next boundary to be calculated is the $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$ $/ \mathrm{Fe}^{2+}$ boundary.

$\mathrm{Fe}(\mathrm{OH})_{3} / \mathrm{Fe}^{2+}$ BOUNDARY

Again we write a balanced reaction

$$
\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}^{+}+\mathrm{e}^{-} \leftrightarrow \mathrm{Fe}^{2+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The mass-action expression is:

$$
\begin{gathered}
K=\frac{a_{\mathrm{Fe}^{2+}}}{a_{e^{-}}^{3} \mathrm{H}^{+}} \\
\log K=\log a_{\mathrm{Fe}^{2+}}+p e+3 p H \\
p e=\log K-\log a_{\mathrm{Fe}^{2+}}-3 p H
\end{gathered}
$$

$$
\begin{gathered}
\Delta \mathbf{G}_{\mathbf{r}}^{\circ}=\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{Fe}^{2+}+3 \Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{O}-\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{Fe}(\mathrm{OH})_{3} \\
\Delta \mathbf{G}_{\mathbf{r}}^{\circ}=(-90.0)+3(-237.1)-(-696.5) \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=-104.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\log K=\frac{104,800 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=18.36 \\
p e=18.36-1 / 2 \log a_{\mathrm{Fe}^{2+}}-3 p H
\end{gathered}
$$

To plot this boundary, we again need to assume a value for $\Sigma \mathrm{Fe} \approx a_{\mathrm{Fe}^{2+}} \approx m_{\mathrm{Fe}^{2+}}$. We must now stick with the choice made earlier, i.e., $\Sigma \mathrm{Fe}$ $=10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$. Now we have

$$
p e=18.36-(-6)-3 p H=24.36-3 p H
$$

The third boundary is now plotted on the diagram. This boundary will probably intersect the $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ boundary, but at this point, we do not yet know where the intersection will be. Thus, the line is shown extending throughout the diagram.

$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+} \mathrm{BOUNDARY}$ We write

$$
\mathrm{Fe}^{3+}+\mathrm{e}^{-} \leftrightarrow \mathrm{Fe}^{2+}
$$

Note that this boundary will be pH independent.

$$
\begin{gathered}
K=\frac{a_{\mathrm{Fe}^{2+}}}{a_{e^{-}} a_{\mathrm{Fe}^{3+}}} \quad \frac{a_{\mathrm{Fe}^{2+}}}{a_{\mathrm{Fe}^{3+}}}=1 \quad p e=\log K \\
\Delta \mathbf{G}_{\mathbf{r}}^{\circ}=\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{Fe}^{2+}-\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{Fe}^{3+} \\
\Delta \mathbf{G}_{\mathbf{r}}^{\circ}=(-90.0)-\left(\mathbf{- 1 6 . 7) = - 7 3 . 3 \mathrm { kJ } \mathrm { mol }}{ }^{-1}\right. \\
\log K=\frac{73,300 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=12.84 \\
p e=12.8
\end{gathered}
$$

The $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ boundary now truncates the $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{OH})_{3}$ boundary as shown. There remains just one boundary to calculate - the $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$ $/ \mathrm{Fe}^{3+}$ boundary. Because the reaction for the $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ boundary does not include any protons, this boundary is horizontal, i.e., pHindependent.

$\mathrm{Fe}(\mathrm{OH})_{3} / \mathrm{Fe}^{3+}$ BOUNDARY

$$
\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}^{+} \leftrightarrow \mathrm{Fe}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
K=\frac{a_{\mathrm{Fe}^{3+}}}{a_{\mathrm{H}^{+}}^{3}} \quad \begin{array}{ll}
\log K=\log a_{\mathrm{Fe}^{3+}}+3 p H \\
p H=1 / 3 \log K-1 / 3 \log a_{\mathrm{Fe}^{3+}}
\end{array}
$$

$$
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ}{ }^{\circ} \mathrm{e}^{3+}+3 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{O}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{Fe}(\mathrm{OH})_{3}
$$

$$
\Delta G_{r}^{\circ}=(-16.7)+3(-237.1)-(-696.5)=-31.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
\log K=\frac{31,500 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=5.52
$$

$$
p H=1 / 3(5.52)-1 / 3(-6)=3.84
$$

Final pe-pH diagram for the $\mathrm{Fe}-\mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$ system. Note that the solubility of iron phases is greater when the dissolved iron species is the reduced Fe^{2+}. In other words, Fe is more soluble under reducing conditions. Because most natural waters have pH values in the range $5.5-8.5$, they will not contain much iron unless redox conditions are relatively reducing.
$\mathrm{N}-\mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$ SYSTEM

Species	$\Delta \mathrm{G}_{\mathrm{r}}{ }^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	Species	$\Delta \mathrm{G}_{\mathrm{r}}{ }^{\circ}(\mathrm{kJ} \mathrm{mol}$
$\left.\mathrm{NH}_{4}{ }^{-1}\right)$			
$\mathrm{NH}_{3}{ }^{0}$	-79.4	$\mathrm{NO}_{3}{ }^{\circ}$	-110.8
$\mathrm{~N}_{2}$	-26.5	$\mathrm{NO}_{2}{ }^{-}$	-37.2
	0	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	-237.1

$\mathrm{NH}_{3}{ }^{\mathbf{0}} / \mathrm{NH}_{4}{ }^{+}$BOUNDARY

As before, we write a reaction between the species

$$
\begin{gathered}
\mathrm{NH}_{3}{ }^{\circ}+\mathrm{H}^{+} \leftrightarrow \mathrm{NH}_{4}^{+} \\
K=\frac{a_{\mathrm{NH}_{4}^{+}}}{a_{\mathrm{H}^{+}} a_{\mathrm{NH}}^{3}} \mathrm{o}
\end{gathered}
$$

By definition, the boundary between these two species is where

$$
a_{N H_{4}^{\dagger}}=a_{\mathrm{NH}}^{3}
$$

$$
p H=\log K
$$

$$
\begin{gathered}
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{f}^{\circ} \mathrm{NH}_{4}^{+}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{NH}_{3} \mathrm{o} \\
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=(-79.4)-(-26.5) \\
=-52.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\log K=\frac{52,900 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=9.27 \\
p H=9.27
\end{gathered}
$$

So this is a vertical line at $\mathrm{pH}=9.27$.

$\mathrm{N}_{2}(\mathrm{~g}) / \mathrm{NH}_{4}{ }^{+}$BOUNDARY

We write the reaction

$$
\begin{gathered}
1 / 2 \mathrm{~N}_{2}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \leftrightarrow \mathrm{NH}_{4}^{+} \\
K=\frac{a_{\mathrm{NH}_{4}^{+}}}{a_{e^{3}}^{4} a_{\mathrm{H}^{+}}^{4} p_{N_{2}}^{1 / 2}} \\
\log K=\log a_{\mathrm{NH}_{4}^{+}}+4 p H+3 p e-1 / 2 \log p_{\mathrm{N}_{2}}
\end{gathered}
$$

To plot this boundary, we have to fix both $\Sigma \mathrm{N}_{\mathrm{aq}} \approx m$ $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{p}_{\mathrm{N}_{2}}$. For $\Sigma \mathrm{N}_{\mathrm{aq}}$ we choose $10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$, which is near the drinking water standard for nitrate nitrogen. For $\mathrm{p}_{\mathrm{N}_{2}}$ we choose the atmospheric value of 0.77 atm.

$$
\begin{gathered}
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{NH}_{4}^{+}-1 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{N}_{2} \\
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=(-79.4)-1 / 2(0) \\
=-79.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\log K=\frac{79,400 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=13.91 \\
13.91=-3+4 p H+3 p e-1 / 2(-0.11) \\
3 p e=16.86-4 p H \\
p e=5.62-4 / 3 p H
\end{gathered}
$$

The $\mathrm{N}_{2} / \mathrm{NH}_{4}^{+}$boundary intersects the $\mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}{ }^{\circ}$ boundary at $\mathrm{pe}=-6.78$ and pH $=9.27$. The field of $\mathrm{NH}_{4}{ }^{+}$is now totally enclosed by boundaries intersecting at angles $<180^{\circ}$. The next logical boundary to calculate is the $\mathrm{N}_{2} / \mathrm{NH}_{3}{ }^{\circ}$ boundary.

$\mathrm{N}_{2}(\mathrm{~g}) / \mathrm{NH}_{3}{ }^{\circ}$ BOUNDARY

We now write the reaction

$$
\begin{gathered}
1 / 2 \mathrm{~N}_{2}+3 \mathrm{H}^{+}+3 \mathrm{e}^{-} \leftrightarrow \mathrm{NH}_{3}^{\circ} \\
K=\frac{a_{\mathrm{NH}_{3}^{o}}}{a_{e^{3}}^{3} a_{H^{+}}^{3} p_{N_{2}}^{1 / 2}}
\end{gathered}
$$

$$
\log K=\log a_{N H_{3}^{\circ}}+3 p H+3 p e-1 / 2 \log p_{N_{2}}
$$

 $\mathrm{p}_{\mathrm{N}_{2}}=0.77 \mathrm{~atm}$ as before.

$$
\begin{gathered}
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{NH}_{3}^{\circ}-1 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{N}_{2} \\
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=(-26.5)-1 / 2(0) \\
=-26.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\log K=\frac{26,500 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=4.64 \\
4.64=-3+3 p H+3 p e-1 / 2(-0.11) \\
3 p e=7.56-3 p H \\
p e=2.53-p H
\end{gathered}
$$

Now the $\mathrm{NH}_{3}{ }^{\circ}$ field is totally enclosed. We would suspect that the next boundary to calculate is the $\mathrm{N}_{2}(\mathrm{~g}) / \mathrm{NO}_{3}{ }^{-}$ boundary.

$\mathbf{N}_{\mathbf{2}}(\mathrm{g}) / \mathrm{NO}_{3}{ }^{-}$BOUNDARY

Starting with the reaction

$$
\begin{gathered}
\mathrm{NO}_{3^{-}}+6 \mathrm{H}^{+}+5 \mathrm{e}^{-} \leftrightarrow 1 / 2 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
K=\frac{p_{N_{2}}^{1 / 2}}{a_{e^{-}}^{5} a_{H^{+}}^{6} a_{\mathrm{NO}_{3}^{-}}} \\
\log K=-\log a_{\mathrm{NO}_{3}}+6 p H+5 p e+1 / 2 \log p_{N_{2}}
\end{gathered}
$$

To be consistent, we choose $\Sigma \mathrm{N}_{\mathrm{aq}} \approx m_{\mathrm{NO}_{3}-}=$ $10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ and $\mathrm{p}_{\mathrm{N}_{2}}=0.77 \mathrm{~atm}$ as before.

$$
\begin{gathered}
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=3 \Delta \mathrm{G}_{\mathrm{f} \mathrm{H}_{3} \mathrm{O}}^{\circ}+1 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{N}_{2}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{NO}_{3}{ }^{-} \\
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=3(-237.1)+1 / 2(0)-(-110.8) \\
=-600.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\log K=\frac{600,500 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=105.2 \\
105.2=3+6 p H+5 p e+1 / 2(-0.11) \\
5 p e=102.2-6 p H \\
p e=20.45-6 / 5 \mathrm{pH}
\end{gathered}
$$

Final Eh-pH diagram for the $\mathrm{N}-\mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$ system. Note that $\mathrm{NO}_{3}{ }^{-}$should be present in significant quantities only in waters containing free oxygen. Ammonium ion and ammonia will be present only in very reducing waters.

ANY WATER CONTAINING SIGNIFICANT Fe ${ }^{2+}$ SHOULD REDUCE NO_{3} !

- We can see this from the pe-pH diagrams.
- We can also see this from a simple calculation. We first write the following reaction

$$
5 \mathrm{Fe}^{2+}+\mathrm{NO}_{3}^{-}+6 \mathrm{H}^{+} \leftrightarrow 5 \mathrm{Fe}^{3+}+1 / 2 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

$$
K=\frac{p_{N_{2}}^{1 / 2} a_{\mathrm{Fe}^{3+}}^{5}}{a_{\mathrm{H}^{+}}^{6} a_{\mathrm{NO}_{3}^{-}} a_{\mathrm{Fe}^{2+}}^{5}}
$$

$$
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=3 \Delta \mathrm{G}_{\mathrm{f} \mathrm{H}_{3} \mathrm{O}}^{\circ}+5 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{Fe}^{3+}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{NO}_{3}-5 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{Fe}^{2+}
$$

$$
\Delta G_{r}^{\circ}=3(-237.1)+5(-16.7)-(-110.8)-5(-90.0)
$$

$$
=-234.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
\log K=\frac{234,000 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=40.99
$$

Let us assume that for a given water, the pH was measured to be $6, \mathrm{p}_{\mathrm{N}_{2}}=0.77 \mathrm{~atm}$, and

$$
\begin{gathered}
\frac{a_{\mathrm{Fe}^{3+}}}{a_{\mathrm{Fe}^{2+}}}=10^{-2} \\
\log K=\log \frac{p_{N_{2}}^{1 / 2}}{a_{\mathrm{NO}_{3}^{-}}}+5 \log \frac{a_{\mathrm{Fe}^{3+}}}{a_{\mathrm{Fe}^{2+}}}+6 p H \\
\log \frac{p_{\mathrm{N}_{2}}^{1 / 2}}{a_{\mathrm{NO}_{3}^{-}}}=40.99-5 \log \left(10^{-2}\right)-6(6)=15
\end{gathered}
$$

$$
a_{\mathrm{NO}_{3}^{-}}=8.77 \times 10^{-16} \mathrm{~mol} \mathrm{~L}^{-1}
$$

$\mathrm{NO}_{2}{ }^{-} / \mathrm{NO}_{3}-$ BOUNDARY

Denitrification of $\mathrm{NO}_{3}{ }^{-}$to N_{2} proceeds via several intermediate steps, nitrite $\left(\mathrm{NO}_{2}{ }^{-}\right)$being the first intermediate. We next calculate the $\mathrm{NO}_{2}-/ \mathrm{NO}_{3}{ }^{-}$boundary.

$$
\mathrm{NO}_{3^{-}}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \leftrightarrow \mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

We assume $\mathrm{a}_{\mathrm{NO}_{3}-}=\boldsymbol{a}_{\mathrm{NO}_{2}-}$
$\Delta \mathrm{G}_{\mathrm{r}}{ }^{\circ}=\Delta \mathrm{G}_{\mathrm{f} \mathrm{H}_{2} \mathrm{O}}^{\circ}+\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ} \mathrm{NO}_{2}-\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ} \mathrm{NO}_{3}-$

$$
\Delta G_{r}^{\circ}=(-237.1)+(-37.2)-(-110.8)
$$

$$
=-163.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\log K=\frac{163,500 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=$
28.64
$28.64=2 p H+2 p e$
$2 p e=28.64-2 p H$
$p e=14.32-p H$

The dotted line is the $\mathrm{NO}_{3}{ }^{-} / \mathrm{NO}_{2}{ }^{-}$ boundary. It is drawn as a dotted line because it is metastable. We can see this because $\mathrm{NO}_{3}{ }^{-}$is reduced at the $\mathrm{NO}_{3}-/ \mathrm{N}_{2}(\mathrm{~g})$ boundary at a pe above the NO_{3}^{-} $/ \mathrm{NO}_{2}{ }^{-}$boundary. Thus, $\mathrm{NO}_{3}{ }^{-}$is not available to react to form $\mathrm{NO}_{2}{ }^{-}$. Thus, nitrite is a metastable species, and only occurs in natural waters in low concentrations where denitrification is occurring.

$\mathrm{S}-\mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$ SYSTEM

Species	$\Delta \mathrm{G}_{\mathrm{r}}{ }^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	Species	$\Delta \mathrm{G}_{\mathrm{r}}{ }^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{SO}_{4}{ }^{2-}$	-744.0	$\mathrm{H}_{2} \mathrm{~S}^{\circ}$	-27.7
$\mathrm{HSO}_{4}{ }^{-}$	-755.3	HS^{-}	12.3^{*}
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	-237.1	$\mathrm{~S}^{2-}$	85.8

*The value of 44.8 given in the Appendix to Kehew (2001) is incorrect.

$\mathrm{H}_{2} \mathrm{~S}^{\circ} / \mathrm{HS}^{-}$BOUNDARY

$$
\mathrm{H}_{2} \mathrm{~S}^{\circ} \leftrightarrow \mathrm{HS}^{-}+\mathrm{H}^{+}
$$

We define the boundary to be where

$$
\begin{gathered}
a_{\mathrm{HS}^{-}}=a_{\mathrm{H}_{2} \mathrm{~s}^{\circ}} \quad p H=-\log K \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{HS}^{-}-\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{~s}^{\circ} \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=(12.3)-(-27.7)=40.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\log K=\frac{-40,000 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=
\end{gathered}
$$

The vertical $\mathrm{H}_{2} \mathrm{~S}^{0} / \mathrm{HS}^{-}$ boundary. As usual, this boundary will be truncated by another boundary eventually, but we do not yet know where.

HS-/S²- BOUNDARY

$$
\mathrm{HS}^{-} \leftrightarrow \mathrm{S}^{2-}+\mathrm{H}^{+}
$$

We define the boundary to be where

$$
\begin{gathered}
a_{H^{-}}=a_{S^{2-}} \quad p H=-\log K \\
\Delta \mathbf{G}_{r}^{\circ}=\Delta \mathbf{G}_{f}^{\circ} \mathrm{s}^{2-}-\Delta \mathbf{G}_{f}^{\circ} \mathrm{HS}^{-} \\
\Delta \mathbf{G}_{r}^{\circ}=(85.8)-(12.3)=40.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

$\mathrm{HSO}_{4}^{-} / \mathrm{SO}_{4}{ }^{2-}$ BOUNDARY

$$
\mathrm{HSO}_{4}^{-} \leftrightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+}
$$

We define the boundary to be where

$$
\begin{gathered}
a_{\mathrm{HSO}_{4}^{-}}=a_{\mathrm{SO}_{4}^{2-}} \quad \mathrm{pH}=-\log K \\
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{SO}_{4}^{2-}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{HSO}_{4}^{-} \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=(-744.0)-(-755.3)=11.30 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

$$
\log K=\frac{-11,300 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=-1.98
$$

Our pe-pH diagram with all three vertical boundaries. The next logical boundary to calculate would be the HSO_{4}^{-} $/ \mathrm{H}_{2} \mathrm{~S}^{0}$ boundary.

$\mathrm{HSO}_{4}-/ \mathrm{H}_{2} \mathrm{~S}^{\circ} \mathrm{BOUNDARY}$

$$
\mathrm{HSO}_{4}^{-}+9 \mathrm{H}^{+}+8 \mathrm{e}^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{~S}^{\circ}+4 \mathrm{H}_{2} \mathrm{O}
$$

We define the boundary to be where

$$
\begin{gathered}
a_{\mathrm{HSO}_{4}^{-}}=a_{\mathrm{H}_{2} \mathrm{~S}^{\circ}} \quad \log \mathrm{K}=9 \mathrm{pH}+8 p e \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{~S}^{\circ}+4 \Delta \mathbf{G}_{\mathrm{f}}^{\circ}{ }^{\circ} \mathrm{H}_{2} \mathrm{O}-\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{HSO}_{4}^{-} \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=(-27.7)+4(-237.1)-(-755.3)=-220.80 \\
\mathrm{gK}=\frac{220,800 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=38.6
\end{gathered}
$$

Now we have enclosed a predominance field for HSO_{4}^{-} on our pe-pH diagram. We can see that $\mathrm{HSO}_{4}{ }^{-}$will be the predominant aqueous sulfur species only in very acidic waters, such as those that might result from acid-mine drainage.

$\mathrm{SO}_{4}{ }^{2-/} / \mathrm{H}_{2} \mathrm{~S}^{\circ}$ BOUNDARY

$\mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{~S}^{\circ}+4 \mathrm{H}_{2} \mathrm{O}$ \square
We define the boundary to be where

$$
\begin{gathered}
a_{\mathrm{SO}_{4}^{2-}}=a_{\mathrm{H}_{2} \mathrm{~S}^{\circ}} \quad \log \mathrm{K}=10 \mathrm{pH}+8 p e \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{~s}^{\circ}+4 \Delta \mathrm{G}_{\mathrm{f}}^{\circ}{ }_{H_{2} \mathrm{O}}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{SO}_{4}^{2-} \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=(-27.7)+4(-237.1)-(-744.0)=-232.10
\end{gathered}
$$

$\log K=\quad 232,100 \mathrm{~J} \mathrm{~mol}$ 298.15 K) $=40.66$ 2.303(8.314 J K ${ }^{-1} \mathrm{~mol}^{-1}$)(298.15 K)

Our pe-pH diagram with the predominance field for $\mathrm{H}_{2} \mathrm{~S}^{0}$ filled in. The $\mathrm{HS}^{-} / \mathrm{SO}_{4}{ }^{2-}$ boundary is next!

$\mathrm{SO}_{4}^{2-/ H S}$ BOUNDARY

$\mathrm{SO}_{4}{ }^{2-}+9 \mathrm{H}^{+}+8 \mathrm{e}^{-} \leftrightarrow \mathrm{HS}^{-}+4 \mathrm{H}_{2} \mathrm{O}$

We define the boundary to be where

$$
\begin{gathered}
a_{\mathrm{SO}_{4}^{2-}}=a_{\mathrm{HS}^{-}} \quad \log \mathrm{K}=9 \mathrm{pH}+8 p e \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{HS}^{-}+4 \Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{O}^{-}-\Delta \mathbf{G}_{\mathrm{f}}^{\circ} \mathrm{SO}_{4}^{2-} \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=(12.3)+4(-237.1)-(-744.0)=-192.10 \\
\log \mathrm{~K}=\frac{192,100 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=33 .
\end{gathered}
$$

Our pe-pH diagram with the predominance field for HSfilled in. The last boundary is the one between $\mathrm{SO}_{4}{ }^{2-}$ and S^{2-}.

$\mathrm{SO}_{4}{ }^{2-/ S^{2-}}$ BOUNDARY

$\mathrm{SO}_{4}{ }^{2-}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-} \leftrightarrow \mathrm{S}^{2-}+4 \mathrm{H}_{2} \mathrm{O}$

We define the boundary to be where

$$
\begin{gathered}
a_{\mathrm{SO}_{4}^{2-}}=a_{\mathrm{s}^{2-}} \log \mathrm{K}=8 p H+8 p e \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=\Delta \mathbf{G}_{\mathrm{f} \mathrm{~S}^{2-}}^{\circ}+4 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{O}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{SO}_{4}^{2-} \\
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}=(85.8)+4(-237.1)-(-744.0)=-118.60 \\
\log \mathrm{~K}=\frac{118,600 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=20 .
\end{gathered}
$$

Our final pe-pH diagram. We can see from this diagram that the predominant form of sulfur in most natural waters will be sulfate. Under extremely reduced conditions, $\mathrm{H}_{2} \mathrm{~S}^{0}$ and HS- may be important. However, we will rarely encounter natural waters where HSO_{4}^{-}or S^{2-} are predominant. Finally, we note that this diagram has been constructed for values of $\Sigma \mathrm{S}_{\text {aq }}$ sufficiently low that native sulfur is not stable.

$\mathrm{S}(\mathrm{s}) / \mathrm{H}_{2} \mathrm{~S}^{\circ}$ BOUNDARY $\mathrm{S}(\mathrm{s})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{~S}^{\circ}$

$\log K=2 p H+2 p e+\log a_{\mathrm{H}_{2} \mathrm{~S}^{\circ}}$
We choose $\Sigma \mathrm{S}_{\mathrm{aq}}=a_{\mathrm{H}_{2} \mathrm{So}^{\circ}}=0.1 \mathrm{~mol} \mathrm{~L}^{-1}$

$$
\Delta G_{r}^{\circ}=\Delta G_{f}^{\circ} H_{2} S^{\circ}=(-27.7)=-27.7
$$

$27,700 \mathrm{~J} \mathrm{~mol}^{-}$
$\log K=$
$\left.14 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})=4.85$
$4.85=2 p H+2 p e+(-1)$

S(s)/HS- BOUNDARY
 $$
\mathrm{S}(\mathrm{~s})+\mathrm{H}^{+}+2 \mathrm{e}^{-} \leftrightarrow \mathrm{HS}^{-}
$$

$\log K=p H+2 p e+\log a_{\text {HS }}$
We choose $\Sigma \mathrm{S}_{\mathrm{aq}}=a_{\mathrm{HS}^{-}}=0.1 \mathrm{~mol} \mathrm{~L}^{-1}$

$$
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f} \text { Hs- }}^{\circ}=12.3=12.3
$$

$-2.15=p H+2 p e+(-1)$

S(s)/SO ${ }_{4}{ }^{2-}$ BOUNDARY

$$
\mathrm{S}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{+}+6 \mathrm{e}^{-} \quad \mathrm{K}=a_{\mathrm{SO}_{4}^{2}-a_{\mathrm{H}^{+}}^{8}} a_{e^{-}}^{6}
$$

$$
\log K=-8 p H-6 p e+\log a_{\mathrm{SO}_{4}^{2-}}
$$

$$
\text { We choose } \Sigma \mathrm{S}_{\mathrm{aq}}=a_{\mathrm{SO}_{4}^{2-}}=0.1 \mathrm{~mol} \mathrm{~L}^{-1}
$$

$$
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{so}_{4}^{2-}=(-744.0)-4(-237.1)=204.4
$$

$$
\log K=
$$

\qquad 2.303(8.314 $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$)(298.15 K)

S(s)/ HSO_{4}^{-}BOUNDARY

$\mathrm{S}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HSO}_{4}^{-}+7 \mathrm{H}^{+}+6 \mathrm{e}^{-}$

$\log K=-7 p H-6 p e+\log a_{\mathrm{HSO}_{4}^{-}}$
We choose $\Sigma \mathrm{S}_{\mathrm{aq}}=a_{\mathrm{HSO}_{4}^{-}}=0.1 \mathrm{~mol} \mathrm{~L}^{-1}$

$$
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{HSO}_{4^{-}}=(-755.3)-4(-237.1)=193.1
$$

$-33.83=-7 \mathrm{pH}-6 \mathrm{pe}+(-1)$
$\mathrm{pe}=5.47-7 / 6 \mathrm{pH}$

The pe-pH diagram for the S-$\mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$ system at a total dissolved S concentration high enough to yield a stability field for solid sulfur. Not that the latter appears as a wedge along the sulfate-sulfide boundary as expected because $S(0)$ is intermediate in oxidation state to $\mathrm{S}(-\mathrm{II})$ and $\mathrm{S}(\mathrm{VI})$. This wedge pinches out (dissappears) at lower total dissolved sulfur concentrations, but expands at higher concentrations.

$\mathrm{Cr}-\mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$ SYSTEM

Species	$\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	Species	$\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-237.1	$\mathrm{Cr}(\mathrm{OH})^{2+}$	-431.0
$\mathrm{HCrO}_{4}{ }^{-}$	-764.7	$\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1058.1
$\mathrm{CrO}_{4}{ }^{2-}$	-727.8	$\mathrm{CrO}_{2}{ }^{-}$	-535.6

$\mathrm{Cr}(\mathrm{OH})^{2+} / \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$ BOUNDARY

$$
\begin{gathered}
1 / 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathbf{s})+2 \mathrm{H}^{+} \leftrightarrow \mathrm{Cr}(\mathrm{OH})^{2+}+1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
\mathrm{K}=\frac{a_{\operatorname{Cr}(\mathrm{OH})^{2+}}}{a_{\mathrm{H}^{+}}^{2}} \\
\log \mathrm{~K}=\log a_{\mathrm{Cr}(\mathrm{OH})^{2+}}+2 p H \\
p H=1 / 2 \log \mathrm{~K}-1 / 2 \log a_{\operatorname{Cr}(\mathrm{OH})^{2+}}
\end{gathered}
$$

$$
\begin{gathered}
\Delta \mathbf{G}_{\mathrm{r}}^{\circ}==\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{Cr}(\mathrm{OH})^{2+}+1 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{O}-1 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ}{ }^{\circ} \mathrm{Cr}_{2} \mathrm{O}_{3} \\
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=(-431.0)+1 / 2(-237.1)-1 / 2(-1058.1) \\
=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\log \mathrm{~K}=\frac{20,500 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=3.59 \\
p H=1.795-1 / 2 \log a_{\mathrm{Cr(OH})^{2+}}
\end{gathered}
$$

We set $\Sigma \mathrm{Cr}_{\mathrm{aq}} \approx m_{\mathrm{Cr}(\mathrm{OH})^{2+}}=10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$.
$p H=1.795-1 / 2(-6)=4.80$

The pe-pH diagram with the $\mathrm{Cr}(\mathrm{OH})^{2+} / \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$ boundary plotted.

$\mathrm{CrO}_{2}-/ \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) \mathrm{BOUNDARY}$
 $$
1 / 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})+1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{CrO}_{2}^{-}+\mathrm{H}^{+}
$$
 $$
K=a_{\mathrm{CrO}_{2}^{-}} a_{\mathrm{H}^{+}} \quad p H=\log a_{\mathrm{CrO}_{2}^{-}}^{-}-\log K
$$
 $$
\Delta G_{r}^{\circ}=\Delta G_{f}^{\circ}{ }^{\circ} \mathrm{CrO}_{2}-1 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{O}-1 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{Cr}_{2} \mathrm{O}_{3}
$$
 $$
\Delta G_{r}{ }^{\circ}=(-535.6)-1 / 2(-237.1)-1 / 2(-1058.1)
$$
 $$
=112.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$
 $$
\log K=\frac{-112,000 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=-19.62
$$

The pe-pH diagram with the $\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) / \mathrm{CrO}_{2}-$ boundary plotted. Now all the vertical, pe-independent boundaries have been plotted. The next boundary to calculate is the $\mathrm{HCrO}_{4}^{-} / \mathrm{Cr}(\mathrm{OH})^{2+}$ boundary.

$\mathrm{Cr}(\mathrm{OH})^{2+} / \mathrm{HCrO}_{4}^{-} \mathrm{BOUNDARY}^{-}$
 $\mathrm{HCrO}_{4}^{-}+6 \mathrm{H}^{+}+3 \mathrm{e}^{-} \leftrightarrow \mathrm{Cr}(\mathrm{OH})^{2+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$\log K=6 p H+3 p e$
$a_{\mathrm{Cr}(\mathrm{OH})^{2+}}=a_{\mathrm{HCrO}_{4}^{-}}$
$p e=1 / 3 \log K-2 p H$

$$
\begin{gathered}
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ}{ }_{\mathrm{Cr}(\mathrm{OH})^{2+}+3 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{O}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ}{ }_{\mathrm{HCrO}}^{4}}^{-} \\
\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=(-431.0)+3(-237.1)-(-764.7) \\
=-377.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
377.600 \mathrm{~J} \mathrm{~mol}^{-1} \\
2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})
\end{gathered}
$$

The pe-pH diagram with the $\mathrm{HCrO}_{4}{ }^{-/ \mathrm{Cr}(\mathrm{OH})^{2+} \text { boundary }}$ plotted. Next, the logical boundary to do is HCrO_{4}^{-} $/ \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$.

$\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) / \mathrm{HCrO}_{4}^{-}$BOUNDARY
 $$
\mathrm{HCrO}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \leftrightarrow 1 / 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})+5 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

 $\log K=4 p H+3 p e-\log a_{\text {HCrOA }}$
 $$
\Delta G_{r}^{\circ}=1 / 2 \Delta G_{f}^{\circ} \mathrm{Cr}_{2} \mathrm{O}_{3}+5 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{O}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{HCrO}_{4}^{-}
$$
 $$
\Delta G_{r}^{\circ}=1 / 2(-1058.1)+5 / 2(-237.1)-(-764.7)
$$
 $$
=-357.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
\log K=\frac{357,100 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})}=62.55
$$

The pe-pH diagram with the $\mathrm{HCrO}_{4}-/ \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$ boundary plotted. The fields for $\mathrm{Cr}(\mathrm{OH})^{2+}$ and HCrO_{4}^{-}are now enclosed with boundaries intersecting at angles of less than 180°. The logical next boundary to do is $\mathrm{CrO}_{4}{ }^{2-}$ $/ \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$.

$$
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) / \mathrm{CrO}_{4}^{2-} \mathrm{BOUNDARY} \\
& \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}^{+}+3 \mathrm{e}^{-} \leftrightarrow 1 / 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})+5 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{K}=\frac{1}{a_{\mathrm{CrO}_{4}^{2-}} a_{\mathrm{H}}^{5} a_{e^{-}}^{3}} \quad \Sigma \mathrm{Cr}_{\mathrm{aq}}=a_{\mathrm{CrO}_{4}^{2-}}=10^{-6} \\
& \log \mathrm{~K}=5 \mathrm{pH}+3 p e-\log a_{\mathrm{CrO}_{4}^{2-}} \\
& \Delta \mathrm{G}_{\mathrm{r}}^{\circ}=1 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{Cr}_{2} \mathrm{O}_{3}+5 / 2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{H}_{2} \mathrm{O}-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \mathrm{CrO}_{4}^{2-} \\
& \Delta \mathrm{G}_{\mathrm{r}}^{\circ}=1 / 2(-1058.1)+5 / 2(-237.1)-(-727.8) \\
& = \\
& =-394.0 \mathrm{~kJ} \mathrm{~mol} l^{-1}
\end{aligned}
$$

394,000 $\mathrm{J} \mathrm{mol}^{-1}$
\square

The pe-pH diagram with the $\mathrm{CrO}_{4}{ }^{2-} / \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$ boundary plotted. The field for $\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$ are now enclosed with boundaries intersecting at angles of less than 180°. The final boundary to do is $\mathrm{CrO}_{4}{ }^{2-}$ $/ \mathrm{CrO}_{2}{ }^{-}$.

This is the final pe-pH diagram for the system Cr-$\mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$. Note that, under moderately to strongly reducing conditions, the solid $\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$ is stable over as wide pH range. We see substantial dissolution of this $\mathrm{Cr}(\mathrm{III})$ phase only at $\mathrm{pH}<5$ and $\mathrm{pH}>13.5$. However, at higher pe where $\mathrm{Cr}(\mathrm{VI})$ species are prevalent, Cr is soluble over the entire pH range from 0 to 14 .

