

Question 1: A group of 15 smokers were asked about the number of cigarettes they smoke per day. Sample data were as follows:

No. of cigarettes	10	15	17	20	22
No. of smokers	1	3	5	2	4

Find the following measures:
(a) The sample mean
(b) The sample standard deviation
(c) The sample interquartile range

Question 2: The grades in a general exam had mean, standard deviation, $\mathrm{Q}_{1}, \mathrm{Q}_{3}$ and the range were $70,5,30,30,90$, respectively. Let X be the grade of a student and assume that each grade X is changed to $\mathrm{Y}=-2 \mathrm{X}+3$. Find
(a) The mean \bar{Y} of the transformed grades Y
(b) The standard deviation of the transformed grades Y
(c) The range of the transformed grades Y
(d) The first quartile of Y

Question 3: The mean and standard deviation for the final grades of 500 students in a statistics course are 70 and 8 , respectively.
(a) Find the largest number of grades outside the interval [54, 86]
(b) If only one grade was mistakenly recorded 10 instead of 100 , what is new mean?

Question 4: Given that $\mathrm{P}(\mathrm{A})=0.45, \mathrm{P}(\mathrm{B})=0.50$ and $\mathrm{P}(\bar{A} \cap \bar{B})=0.20$. Obtain
(a) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
(b) $\mathrm{P}(\bar{A} \mid \bar{B})$

Question 5: Given the information that
Box I : contains 3 Red (R) and 2 white (W) balls
Box II: contains $2 \operatorname{Red}(\mathrm{R})$ and 1 white (W) balls.
One ball was drawn randomly from Box I and put in Box II, then one ball is drawn randomly from Box II. Determine
(a) The probability that the ball drawn from Box II is red =
(b) If the ball drawn from Box II is red, what is the probability that the ball transferred from Box I to Box II is red?

Question 6: Three balls are drawn without replacement from a box containing 2 red and 2 black balls. Let X be the number of red balls. Find
(a) The mean of X is
(b) The Std. of X is

Question 7: A class has 12 Math. Students (2 males and 10 females) and 8 physics students (3 males and 5 females).
(a) What is the probability of selecting 2 students from the 20 students such that all are physics students?
(b) What is the probability that there is at most one physics student among the 5 students selected from the entire class?

Question 8: A family has 5 children (3 girls and 2 boys). Two of the girls and one boy wear glasses
(a) What is the probability of randomly selecting 2 children wearing glasses from the 5 children?
(b) If children are asked to stand in one line. What is the probability that only girls stand next to each other?

Question 9: A random variable takes the values $1,2,3$ where $\mathrm{P}(\mathrm{X}=1)=0.5$ and $E(X)=1.7$. Find
(a) $\mathrm{P}(\mathrm{X}=3)$
(b) Variance of X
(c) $\mathrm{P}(\mathrm{X}>2 \mid \mathrm{X}>1)$

Question 10: Let (X, Y) be bivariate random variable such that $\mathrm{E}(\mathrm{X})=\mathrm{E}(\mathrm{Y})=0$,
$\operatorname{Var}(\mathrm{X})=1, \operatorname{Var}(\mathrm{Y})=4$ and Corr. $(\mathrm{X}, \mathrm{Y})=\rho=-\frac{1}{2}$. Compute
(a) $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
(b) $\mathrm{E}\left(3 \mathrm{X}^{2}-4 \mathrm{Y}+1\right)$
(c) $\operatorname{Var}(2 \mathrm{X}-3 \mathrm{Y}+1)$

