University of Jordan Princ. Stat. -Math.131 1st Sem., 2018 Math. Dept. HW Set #2 Date: Nov. 30, 2018

Question 1: Let X: B(5, 1/3), Y: Poisson (3). Assume that X and Y are independent. Find

(a) $E(X^2)$

(b) Var(3Y-2) (c) P(Y=4)

(d) P(X = 0)

Question 2: For each of 20 questions on a True-False test. If a student answers all the questions by guessing, find the probability that he/she will get at least 10 correct answers.

Question 3: The number of accidents on a highway is Poisson distributed with an average one accident per day. Compute the probability of having at least 2 accidents in a week.

Question 4: Let X: N(10, 4) and Y: N(8, 16). Assume that X and Y are independent random variables. Find

(a) The 90th percentile of X (b) E(3 $X^2 + 7$) (c) $P(X \ge 11 | Y \le 7)$

Question 5:

- (a) Let $X \sim B(100, 0.1)$. Find $P(7 \le X < 11)$
- (b) Let X be binomial random variable with mean 10 and Std. 3. Find P(X > 2).

Question 6: The grades in a general exam are normally distributed with mean 75 and

- (a) What is the proportion of grades that exceed 83?
- (b) If four grades are selected at random, what is the probability that at least one of them will be more than 83?
- (c) If 50 grades are selected at random, what is the probability that at least 7 of them will be more than 83?

Question 7: The weights of male students are normally distributed with mean 65 Kgs and Std. 4 Kgs, while the weights of female students are normally distributed with mean 60 Kgs and Std. 3 Kgs. If one male and one female are selected at random, what is the probability that their total weight will be more than 130 Kgs?

Question 8: Let $X \sim N(50, 100)$, $Y \sim t(15)$, $U \sim \chi_{10}^2$ and $V \sim F(5, 8)$. Find

(a) 80^{th} percentile of X (b) 10^{th} percentile of Y (c) 90^{th} percentile of U

(d) 90th percentile of V

(e) 10th percentile of V

Question 9: Let X_1, X_2, \ldots, X_{12} be a random sample from N(60, σ^2), such that $S^2 = 9$. Find c such that $P(\overline{X} \le c) = 0.90$.

Question 10: Let $X_1, X_2, ..., X_6$ be a random sample from $N(\mu, \sigma^2 = 9)$. If S^2 is the sample variance, find $P(S^2 < 16.63)$.