

Question 1: It is required to estimate μ. Find the required sample size to be 95% sure that your estimator is within $\varepsilon=0.6$ if $\sigma=3$.

Question 2: Answer with True or False (justify)

If $H_{0}: \theta=\theta_{0}$ is rejected at $\alpha=0.10$ then
(a) H_{0} is rejected for all $\alpha>0.1$
(b) H_{0} is rejected for all $\alpha<0.1$
(c) H_{0} is accepted for all $\alpha<0.1$
(d) H_{0} is accepted for all $\alpha>0.1$
(e) $90 \% \mathrm{C}$. I. for θ should not contain θ_{0} if $\mathrm{H}_{1}: \theta \neq \theta_{0}$

Question 3: Let X_{1}, \ldots, X_{15} be a r.s. from $B(1, p)$. Let $Y=\sum_{i=1}^{15} X_{i} \sim B(15, p)$. Assume that $H_{0}: \mathrm{p}=0.7$ is rejected vs. $\mathrm{H}_{1}: \mathrm{p}<0.7$ if $\mathrm{Y} \leq 11$. Find
(a) The level of significance α
(b) β when $\mathrm{p}=0.5$.

Question 4: Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{15}$ be a r.s. from $\mathrm{N}\left(\mu, \sigma^{2}\right)$ such that $\bar{X}=60$ and $\sigma=3$. Find the p -value in each of the following cases:
(a) $\mathrm{H}_{0}: \mu=62$ vs. $\mathrm{H} 1: \mu<62$
(b) $\mathrm{H}_{0}: \mu=62$ vs. $\mathrm{H} 1: \mu \neq 62$

Question 5: Two samples from two independent populations gave the following:

	Group I	Group II
n	36	30
\bar{X}	60	65
S	5	4

(a) Find 95% C. I. for $\mu_{I}, \sigma_{I I}^{2}, \mu_{I}-\mu_{I I}$
(b) Test $\mathrm{H}_{0}: \mu_{I}=62$ vs. $\mathrm{H}_{1}: \mu_{I}<62$, at $\alpha=0.05$
(c) Test $\mathrm{H}_{0}: \mu_{I}=\mu_{I I}$ vs. $\mathrm{H}_{1}: \mu_{I} \neq \mu_{I I}$, at $\alpha=0.05$
(d) Test $\mathrm{H}_{0}: \sigma_{I I}^{2}=25$ vs. $\mathrm{H}_{1}: \sigma_{I I}^{2}>25$, at $\alpha=0.05$

