Bayes Theorem

- (1) Partitioning the sample space into $B_{1}, B_{2}, \ldots, B_{k}$ disjoint events $\left(P\left(B_{i} \bigcap B_{j}\right)=0\right.$ for $i \neq j$.
(2) Given $P\left(A \mid B_{1}\right), \ldots, P\left(A \mid B_{k}\right)$ which represent prior probabilities
(3) Required: $P\left(B_{i} \mid A\right)$

Byes Theorem:

$$
\begin{aligned}
P\left(B_{i} \mid A\right) & =\frac{P\left(B_{i} \cap A\right)}{P(A)} \\
& =\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{i=1}^{k} P\left(A \bigcap B_{i}\right)} \\
& =\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{i=1}^{k} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
\end{aligned}
$$

Example: The mails in US are delivered by three companies FAD, CAD and NAD with

$$
P(F A D)=0.4, P(C A D)=0.3, P(N A D)=0.3
$$

Also

$$
P(\text { Late } \mid F A D)=0.2, P(\text { Late } \mid C A D)=0.4, P(\text { Late } \mid N A D)=0.5
$$

(1) Given the mail is late, what is the probability that it was delivered by FAD.

$$
\begin{aligned}
P(F A D \mid L) & =\frac{0.08}{0.08+0.12+0.15} \\
& =\frac{0.08}{0.35} \\
& =0.23
\end{aligned}
$$

Cont./ Example:

(2) Given the mail is late, what is the probability that it was delivered by FAD or NAD.

$$
\begin{aligned}
P(F A D \mid L)+P(N A D \mid L) & =\frac{0.08+0.15}{0.08+0.12+0.15} \\
& =\frac{0.23}{0.35} \\
& =0.66
\end{aligned}
$$

(3) What is the probability that it was late?

$$
P(\text { Late })=0.08+0.12+0.15=0.35
$$

(4) Given the mail is not late, What is the probability that it was delivered by CAD?

$$
P(C A D \mid \bar{L})=\frac{0.18}{0.65}=0.28
$$

Example:

Box I contains 3 Red and 2 Black balls
Box II contains 1 Red and 4 Black balls
If 2 balls are transferred from Box I into Box II and then one ball is drawn from Box II. If the ball drawn from Box II was red, what is the probability the balls transferred from Box I are both red.

Solution: Here one can use the tree argument (what is that?).

$$
\begin{aligned}
P(\text { Balls transferred from Box I are red|Ball drawn from II was red }) & =\frac{9 / 70}{(9+12+1) / 70} \\
& =\frac{9}{22}
\end{aligned}
$$

Example: If

$$
P(A \bigcap \bar{B})=0.4, \quad P(\bar{A} \bigcap B)=0.2, \quad \text { and } P(\bar{A} \bigcap \bar{B})=0.3
$$

Find
(i) $P(A)$
(ii) $P(A)$
(iii) $P(\bar{A} \mid B)$

Solution: From $P(\bar{A} \bigcap \bar{B})=0.3$, we have $P(A \bigcup B)=0.7$. Now
(i) $P(A \bigcap B)=0.1$ and then

$$
\begin{aligned}
P(A \bigcap \bar{B}) & =P(A)-P(A \bigcap B) \\
0.4 & =P(A)-0.1
\end{aligned}
$$

Then $P(A)=0.5$.

Cont./Example: (ii) $P(A \bigcap B)=0.1$ and then

$$
\begin{aligned}
P(\bar{A} \bigcap B) & =P(B)-P(A \bigcap B) \\
0.2 & =P(B)-0.1
\end{aligned}
$$

Then $P(A)=0.3$.
(ii) $P(\bar{A} \mid B)$

$$
\begin{aligned}
P(\bar{A} \mid B) & =\frac{P(\bar{A} \bigcap B)}{P(B)} \\
& =\frac{0.2}{0.3} \\
& =\frac{2}{3}
\end{aligned}
$$

Example:

Out of 12 people applying for a job, 3 cannot do the work. Suppose that 2 persons will be hired.
(a) In how many ways will 0 or 1 people not be able to do the work
(b)What is the probability that 0 or 1 people not be able to do the work
(c) If 2 persons are chosen in random, what is the probability that neither will be able to do the job.

Solution:
(a) In how many ways will 0 or 1 people not be able to do the work

$$
\begin{aligned}
& =\binom{3}{0}\binom{9}{2}+\binom{3}{1}\binom{9}{1} \\
& =\frac{(9)(8)}{(1)(2)}+(3)(9) \\
& =36+27 \\
& =63
\end{aligned}
$$

Cont./ Example: (b)What is the probability that 0 or 1 people not be able to do the work

$$
\begin{aligned}
& =P(X=0)+P(X=1) \\
& =\frac{\binom{3}{0}\binom{9}{2}+\binom{3}{1}\binom{9}{1}}{\binom{12}{2}} \\
& =\frac{63}{66} \\
& =\frac{21}{22}
\end{aligned}
$$

(c) If 2 persons are chosen in random, what is the probability that neither will be able to do the job.

$$
\begin{aligned}
& =\frac{\binom{3}{2}\binom{9}{0}}{\binom{12}{2}} \\
& =\frac{1}{22}
\end{aligned}
$$

Example:

For each of 20 questions on a multiple-choice test, a student can choose one of 5 answers
(a) How many different sets of answers are possible?
(b) If a person guessed on all the questions, what is the probability that all of the questions would be answered correctly?

Answer:
(a) How many different sets of answers are possible?

$$
\text { answer }=5^{20}
$$

(b) If a person guessed on all the questions, what is the probability that all of the questions would be answered correctly?

$$
\text { Probability }=\frac{1}{5^{20}}
$$

