Random Variables and Probability Distribution

Definitions:

- Random Variable: A random variable is a numerically valued function defined over a sample space S.
- Discrete Random Variable: It is one that can assume a countable number of values.

Examples:
(1) $\#$ of defective items drawn from a sample of size 10.
(2) \# of people in the waiting line in a doctor's office from a sample of size 100.

- Continuous Random Variable: It is one that can assume infinitely large number of values.

Examples:
(1) The failure times of electric bulbs
(2) The weights of children entering the doctor's office

Probability Distribution for Discrete R.V.'s:

$$
\begin{aligned}
& 0 \leq p(x) \leq 1 \\
& \sum_{x} p(x)=1
\end{aligned}
$$

Example: Tossing a coin twice. Let $\mathrm{X}=$ number of heads $=0,1,2$.

$$
\begin{aligned}
& P(X=0)=\frac{1}{4} \\
& P(X=1)=\frac{1}{2} \\
& P(X=2)=\frac{1}{4}
\end{aligned}
$$

X	0	1	2
$p(x)$	$1 / 4$	$1 / 2$	$1 / 4$

Example: Out of 5 items, 3 items are defectives. Two items are drawn at random. Let X $=$ number of defective items chosen. That is, $X=0,1,2$.

$$
\begin{gathered}
P(X=0)=\frac{\binom{3}{0}\binom{2}{2}}{\binom{5}{2}}=0.1 \\
P(X=1)=\frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}}=0.6 \\
P(X=2)=\frac{\binom{3}{2}\binom{2}{0}}{\binom{5}{2}}=0.3 \\
\hline X \\
\hline p(x) \quad 0.1
\end{gathered} 0.6 \quad 0.3 \begin{gathered}
1 \\
\hline
\end{gathered}
$$

Example: Assume $p=P(S)=($ success $)=0.4, q=P(F)=\mathrm{P}($ Failure $)$, and $\mathrm{X}=$ number of drillings until the first success occurs. So $X=1,2,3, \ldots$.

$$
\begin{gathered}
P(X=1)=P(S)=0.4 \\
P(X=2)=P(F S)=(0.6)(0.4)=0.24 \\
P(X=3)=P(F F S)=(0.6)(0.6)(0.4)=0.144
\end{gathered}
$$

X	$P(X)$
1	0.4
2	0.24
3	0.144

Expectation and Its Properties:

$$
\begin{aligned}
& E X=\sum_{x} x P(x)=1.2 \text {, and } E X^{2}=\sum_{x} x^{2} P(x)=1.8 \\
& \sigma^{2}=\operatorname{Var}(X)=E(X-\mu)^{2}=E X^{2}-\mu^{2} \\
& =1.8-(1.2)^{2}=0.36 \text {. }
\end{aligned}
$$

and.

$$
\sigma=\sqrt{0.36}=1096 \text { Principles of Statistics mraqab@ju.edu.jo - p.6/15 }
$$

Properties on Expectation:

(i) $E(X+a)=E(X)+a$
(ii) $E(a+b X)=a+b E(X)$
(iii) $E\left(a+b X+c X^{2}\right)=a+b E(X)+c E\left(X^{2}\right)$
(iv) $\operatorname{Var}(X+a)=\operatorname{Var}(X)$
(v) $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
(vi) $\operatorname{Std}(a X+b)=|a| \operatorname{Std}(X)$.

Example: A sales person receives orders for $0,1,2,3$ or 4 units of products each day with probability $0.4,0.1,0.3,0.1$, and 0.1 , respectively. His salary is 50 JD per day plus 10 JD for each unit ordered.

X	$P(x)$	$x P(x)$	$x^{2} P(x)$
0	0.4	0	0
1	0.1	0.1	0.1
2	0.3	0.6	1.2
3	0.1	0.3	0.9
4	0.1	0.4	1.6
		1.4	3.8

His expected salary is $S=50+10 E(X)=50+14=64$.

Joint Distribution of 2 R.V.'s:

Let

$$
\begin{aligned}
& X=x_{1}, x_{2}, \ldots, x_{k} \\
& Y=y_{1}, y_{2}, \ldots, y_{l}
\end{aligned}
$$

with

$$
f\left(x_{i}, y_{j}\right)=P\left(X=x_{i}, Y=y_{j}\right)
$$

Suppose there are 10 cars in a lot of which 5 are in good condition, 2 have defective transmission (DT), and the other 3 have defective steering (DS). 2 cars are chosen at random.
Define
$X=\#$ of cars with $\mathrm{DT}=0,1,2$ and $\quad Y=\#$ of cars with $\mathrm{DS}=0,1,2$.

Cont./ Example:

$$
\begin{gathered}
f(0,0)=P(X=0, Y=0)=\frac{\binom{5}{2}}{\binom{10}{2}}=\frac{10}{45} \\
f(0,1)=P(X=0, Y=1)=\frac{\binom{2}{0}\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)\binom{5}{1}}{\binom{10}{2}}=\frac{15}{45} \\
f(0,2)=P(X=0, Y=2)=\frac{\binom{2}{0}\binom{3}{2}\binom{5}{0}}{\binom{10}{2}}=\frac{3}{45} \\
f(1,2)=P(X=1, Y=2)=0
\end{gathered}
$$

Cont./ Example:

			Y		
		0	1	2	$P(x)$
X	0	$10 / 45$	$15 / 45$	$3 / 45$	$28 / 45$
	1	$10 / 45$	$6 / 45$	0	$16 / 45$
	2	$1 / 45$	0	0	$1 / 45$
	$P(y)$	$21 / 45$	$21 / 45$	$3 / 45$	1

Cont./ Example:

$$
\begin{aligned}
& P(X=0)=\frac{28}{45} \\
& P(Y=1)=\frac{21}{45} \\
& P(X>Y)=f(1,0)+f(2,0)+f(2,1)=\frac{10}{45}+\frac{1}{45}+0=\frac{11}{45}
\end{aligned}
$$

- Find the distribution of $Z=X+Y$.

Now $Z=0,1,2,3,4$.

$$
\begin{gathered}
P(Z=0)=P(0,0)=\frac{10}{45}, \quad P(Z=1)=P(1,0)+P(0,1)=\frac{25}{45} \\
P(Z=2)=P(0,2)+P(2,0)+P(1,1)=\frac{10}{45} \\
P(Z=3)=P(1,2)+P(2,1)=0, \quad P(Z=4)=P(2,2)=0
\end{gathered}
$$

Cont./ Example:

- Find the mean and Variance of X

X	$P(x)$	$x P(x)$	$x^{2} P(x)$
0	$28 / 45$	0	0
1	$16 / 45$	$16 / 45$	$16 / 45$
2	$1 / 45$	$2 / 45$	$4 / 45$
		$18 / 45$	$20 / 45$

Therefore $E X=18 / 45=0.4, \operatorname{Var}(X)=(20 / 45)-(18 / 45)^{2}=0.44-0.16=$ $0.284 \sigma_{X}=0.53$.

Similarly,

$$
E Y=27 / 45=0.6, \operatorname{Var}(X)=(33 / 45)-(27 / 45)^{2}=0.373, \sigma_{Y}=0.61
$$

Cont./ Example:

- Covariance and Correlation Coefficient X and Y. It is a measure of association. It is defined as

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) \cdot E(Y)
$$

where $E(X Y)=\sum_{x, y}(x y) p(x, y)$. The correlation coefficient between X and Y is

$$
\operatorname{Corr}(X, Y)=\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Then

$$
\begin{gathered}
E(X Y)=(0)(0)(10 / 45)+(1)(1)(6 / 45)+(1)(2)(0)+\ldots+=6 / 45 \\
\operatorname{Cov}(X, Y)=\frac{6}{45}-\frac{18}{45} \frac{27}{45}=0.13-0.24=-0.11
\end{gathered}
$$

and

$$
\rho=\operatorname{Cor} r(X, Y)=\frac{-0.11}{(0.53)(0.61)}=-0.33
$$

Properties on Covariance and Correlation:

- $-1 \leq \rho \leq 1$
- $\operatorname{Corr}(a X+b, c \quad Y+d)=\operatorname{Corr}(X, Y)$ if a and c have the same signs and $\operatorname{Corr}(a X+b, c$ $\mathrm{Y}+\mathrm{d})=-\operatorname{Corr}(\mathrm{X}, \mathrm{Y})$ if a and c have opposite signs
- $\operatorname{Var}(X \mp Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \mp 2 C c o(X, Y)$
- $\operatorname{Var}(a X \mp b Y+c)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y) \mp 2 a b \operatorname{Cov}(X, Y)$
- If X and Y are indep. with $E X=0, S t d(X)=2, E Y=-1, S t d(Y)=4$, then

$$
\begin{aligned}
& \operatorname{Var}(X-Y)=4+16=20 \\
& \operatorname{Var}(0.5 X+0.5 Y)=(1 / 4)(4)+(1 / 4)(16)=1+4=5
\end{aligned}
$$

- If $\operatorname{Cov}(X, Y)=1$, then

$$
\operatorname{Var}(0.5 X+0.5 Y)=(1 / 4)(4)+(1 / 4)(16)+2(1 / 2)(1 / 2)=5.5
$$

