Distributions of Discrete Random Variables

Binomial experiment:

(1) n identical trials
(2) Each trial results in one of two outcomes either success S or failure F
(3) Trials are independent
(4) We are interested in:
$X=$ number of successes $(0,1, \ldots, n)$

X	$p(x)$	
0	q^{2}	$\binom{2}{0} p^{0} q^{2-0}$
1	$2 p q$	$\binom{2}{1} p^{1} q^{1}$
2	p^{2}	$\binom{2}{2} p^{2} q^{2-2}$

In general $P(X=x)=\binom{n}{x} p^{x} q^{n-x}, x=0,1, \ldots, n$

Example: Assume that the probability of hitting a target=0.8. If a person fires 4 shots at the target. (a) What is the probability that he will hit the target exactly 2 times?

$$
\begin{aligned}
P(X=2) & =\binom{4}{2}(0.8)^{2}(0.2)^{2} \\
& =6(0.64)(0.04) \\
& =0.1536
\end{aligned}
$$

(b) What is the probability of hitting the target at least twice?

$$
\begin{aligned}
P(X \geq 2) & =1-P(0)-P(1) \\
& =1-\binom{4}{0}(0.8)^{0}(0.2)^{4}-\binom{4}{1}(0.8)^{1}(0.2)^{3} \\
& =1-0.027 \\
& =0.973
\end{aligned}
$$

Binomial Tables: The tables presents $P(X \leq c)$ up to $n=25$ with some different values of p.

$$
\begin{gathered}
P(X=c)=P(X \leq c)-P(X \leq c-1) \\
P(a \leq X \leq b)=P(X \leq b)-P(X \leq a-1) \\
P(a<X \leq b)=P(X \leq b)-P(X \leq a) \\
P(X>c)=1-P(X \leq c)
\end{gathered}
$$

Mean and Variance:

Mean $=\mu=n p$, Variance $=\sigma^{2}=n p q$ and $\sigma=\sqrt{n p q}$.

Hypergeometric Distribution:

$$
P(X=x)=\frac{\binom{D}{x}\binom{D^{\prime}}{n-x}}{\binom{N}{n}}
$$

where $D^{\prime}=N-D$ and $X=\max \left(0, n-D^{\prime}\right), \ldots, \min (D, n)$.
Mean and Variance:

- $\operatorname{Mean}=\frac{n D}{N}$
- $\operatorname{Var}(\mathrm{X})=n \frac{D}{N}\left(1-\frac{D}{N}\right)\left(\frac{N-n}{N-1}\right)$. Note the last term tends to be one if n is small with respect to N.

Example: A box is containing 3 black and 2 white balls. Two balls are drawn. Let $X=$ number of while balls.

- Drawing with replacement

$$
\begin{aligned}
& P(X=0)=\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)=\frac{9}{25} \\
& P(X=1)=2\left(\frac{3}{5} \frac{2}{5}\right)=\frac{12}{25} \\
& P(X=2)=\left(\frac{2}{5}\right)\left(\frac{2}{5}\right)=\frac{4}{25}
\end{aligned}
$$

In a general form,

$$
P(X=x)=\binom{2}{x}\left(\frac{2}{5}\right)^{x}\left(\frac{2}{5}\right)^{2-x}, x=0,1,2 .
$$

- Drawing without replacement

$$
\begin{aligned}
& P(X=0)=\left(\frac{3}{5}\right)\left(\frac{2}{4}\right)=\frac{3}{10} \\
& P(X=1)=2\left(\frac{3}{5} \frac{2}{4}\right)=\frac{6}{10} \\
& P(X=2)=\left(\frac{2}{5}\right)\left(\frac{1}{4}\right)=\frac{1}{10}
\end{aligned}
$$

In a general form,

$$
P(X=x)=\frac{\binom{2}{x}\binom{3}{2-x}}{\binom{5}{2}}, x=0,1,2
$$

Geometric Distribution:

Let $X=\#$ of trials to get the first success. Then

$$
P(X=x)=q^{x-1} p, x=1,2, \ldots
$$

For example, continue examining n individuals until an affected person is found.

- Mean $=\frac{1}{p}$ and $\operatorname{Var}(\mathrm{X})=\sigma^{2}=\frac{q}{p^{2}}$.
- Keep in tossing 2 balanced dice until the sum of the points in 2 faces 7 appears. Let $X=$ number of tosses needed until. Note $p=\mathrm{P}($ sum $=7)=6 / 36=1 / 6$, $\mu=1 / p=6$ and $\sigma=\sqrt{q / p^{2}}=\sqrt{30}=5.47$. The probability distribution of X is

$$
P(X=x)=\left(\frac{5}{6}\right)^{x-1} \frac{1}{6}, x=1,2, \ldots
$$

$$
P(X>2 \mu-2 \sigma)=P(X>1.06)=1-P(X=1)
$$

$$
=\frac{5}{6} .
$$

Poisson Distribution:

This distribution is called the distribution of rate events. Let $X=$ be the number of occurrences in a time interval.

- It depends only on the average rate of occurrences, this does not require the knowledge of n and p individually.
- Poisson distribution provides an approximation of the binomial distribution when n is large and p is small and $n p$ is moderate magnitude.
- Assumptions:
(1) The number of occurrences in non-overlapping intervals are independent.
(2)Chance of 2 or more occurrences can be assumed to be 0
(3) Average rate of occurrences $=m$ per unit time is a constant.
- The probability distribution of X is

$$
P(X=x)=\frac{e^{-m} m^{x}}{x!}, x=0,1,2, \ldots
$$

Cont./ Poisson Distribution:

- The mean $\mu=E(X)=m$ and $\sigma^{2}=m$.
- Let us consider the following example. $X=$ number of accidents on a highway per day. Assume X is Poisson with $m=2$. Then $\mu=E(X)=2$ and Std. $=\sqrt{2}$.

$$
\begin{aligned}
P(1<X \leq 4) & =P(X \leq 4)-P(X \leq 1) \\
& =0.947-0.406=0.541 \\
P(X=2) & =P(X \leq 2)-P(X \leq 1) \\
& =0.677-0.406=0.271
\end{aligned}
$$

If Y is the number of accidents per 2 days, then $m=2(2)=4$. Therefore

$$
P(Y=2)=0.238-0.092=0.146
$$

Poisson Approximation to Binomial:

90 people are taken under medical test with $P($ getting a cold $)=0.1$. Find an approximate value of the probability that at least 10 persons have a cold $X=$ number persons with a cold $\operatorname{Bin}(90,0.1)$.

$$
\begin{aligned}
P_{B}(X \geq 10) & \approx P_{P}(X \geq 10) \\
& =1-P(X \leq 9) \\
& =1-0.587 \\
& =0.413
\end{aligned}
$$

