Normal Distribution

Normal Probabilities:

- X is continuous r.v. with $f(x)$ is the probability density function (pdf) and area under the curve of $f(x)$ is 1 . This pdf $f(x)$ is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{1}{\sigma^{2}}(x-\mu)^{2}},-\infty<x<\infty .
$$

- $P(a \leq X \leq b)=$ area under $f(x)$ between a and b.
- $P(X=c)=0$
- $P(a \leq X \leq b)=P(a<X \leq b)=P(a<X<b)$
- $P(a<X<b)=$ Area to the left of b - Area to the left of a .
- $P(X>b)=1-P(X \leq b)$.
- $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$. There is one table gives the area under some values. Therefore,

$$
P(a<Z<b)=T(b)-T(a),
$$

$T(c)$ is the value of the table under c.

Examples

(a) $P(Z<1.25)=T(1.25)=0.8944$
(b) $P(0<Z<1.25)=T(1.25)=0.8944-0.5=0.3944$
(c) $P(Z>-1.25)=1-T(-1.25)=1-0.1056=0.8944$
(d) $P(-1.25<Z<1.25)=T(1.25)-T(-1.25)=0.8944-0.1056=0.7888$
(e) $P(0.5<Z<1.25)=T(1.25)-T(0.5)=0.8944-0.6915=0.2029$
(f) $P(-0.5<Z<1.25)=T(1.25)-T(-0.5)=0.8944-0.3085=0.5859$
(g) Locate the value of c satisfying $P(Z>c)=0.05$, then c is 95th percentile. That is $c=1.64$.
(h) Find the value of c satisfying $P(-c<Z<c)=0.90$, then c is 95th percentile. That is $c=1.64$.

Empirical rule

Given the distribution of measurements is approximately bell-shaped then
$(1) \approx 68 \%$ of the measurements will be within $\mu \pm \sigma$.
$(2) \approx 95 \%$ of the measurements will be within $\mu \pm 2 \sigma$.
$(3) \approx 99 \%$ of the measurements will be within $\mu \pm 3 \sigma$.
Check:

$$
\begin{aligned}
P(\mu-\sigma<X<\mu+\sigma) & =P(-1<Z<1) \\
& =0.8413-0.1587 \\
& =0.6826 . \\
P(\mu-2 \sigma<X<\mu+2 \sigma) & =P(-2<Z<2) \\
& =0.9772-0.0228 \\
& =0.9544 .
\end{aligned}
$$

Example

Assume that your scores in Math. 131 are normally distributed with mean $\mu=65$ and Std. $=5$. Find
(1) $P(60<X<70)$

$$
\begin{aligned}
P(60<X<70) & =P\left(\frac{60-65}{5}<Z<\frac{70-65}{5}\right) \\
& =P(-1<Z<1) \\
& =T(1)-T(-1)=0.6826
\end{aligned}
$$

(2) $P(X<75)$

$$
\begin{aligned}
P(X>75) & =P\left(Z>\frac{75-65}{5}\right) \\
& =P(Z>2) \\
& =1-0.9772=0.0228
\end{aligned}
$$

Cont./ Example

(3) If 10% of students will get grade A in this course, what is the minimum score to get an A.
$P(Z \leq z)=0.9 \rightarrow z=1.28$. This is a standardized value which is equivalent to $X=65+5(1.28)=71.40$.

Example: The grades of section 1: $X \sim N(50,4)$ and the grades of section 2: $Y \sim N(55,5)$. One student from each section is taken, what is the probability that the score of section 1 student is greater than that of section 2.

$$
\begin{aligned}
P(X>Y) & =P(X-Y>0) \\
& =P\left(\frac{X-Y-5}{3}>\frac{5}{3}\right) \\
& =P(Z>1.67) \\
& =0.0485 .
\end{aligned}
$$

Note that if $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, then
(1) $Y=a+b X \sim N\left(a+b \mu, b^{2} \sigma_{1}^{2}\right)$. (2) $X+Y \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.

Normal Approximation to Binomial

- If $X \sim B(n, p)$, then $\mu=n p$ and $\sigma=\sqrt{n p q}$.
- For n large and $n p$ and $n p q$ are moderate $[n p \& n q>15]$, the normal distribution can be used to approximate the binomial distribution.

$$
\begin{aligned}
P_{B}(a<X<b) & \approx P(a-0.5 \leq X \leq b+0.5) \\
& =P\left(\frac{a-0.5-n p}{\sqrt{n p q}}>\frac{b+0.5-n p}{\sqrt{n p q}}\right)
\end{aligned}
$$

- Consider a sample of size 50 items taken for a special test. Given that P (an item is defective) $=0.6$. We decide to reject the product if $X=$ number of defective items ≥ 30. Use the normal approximation to compute the P (product is rejected).

$$
\begin{aligned}
P_{B}(X \geq 30) & \approx P_{N}(X \geq 29.5) \\
& =P\left(Z \geq \frac{30-0.5-30}{3.46}\right) \\
& =P(Z \geq-0.144)_{0}=1-0.4434=0.5557
\end{aligned}
$$

Cont./Example

Find $P_{B}(25 \leq X<35)$. Now

$$
\begin{aligned}
P_{B}(25 \leq X<35) & \approx P_{N}(24.5 \leq X \leq 34.5) \\
& =P\left(\frac{24.5-30}{3.46} \leq Z \leq \frac{34.5-30}{3.46}\right) \\
& =P(-1.59 \leq Z \leq 1.3) \\
& =0.9032-0.0559=0.8473
\end{aligned}
$$

