Sampling Distributions

Sampling Distribution of \bar{X}

- The probability of a statistic is called the sampling distribution of the statistic. Let us consider our interest is \bar{X}.
- If $X_{1}, X_{2}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$, then $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$.
- Central Limit Theorem: If random samples of size n observations are drawn from a population with mean μ and Std. σ, then when n large ($n \geq 30$), the sampling distribution of \bar{X} will be approximately a normal distribution with mean μ and Std. $=\sigma / \sqrt{n}$.
- Example: The time required by workers to complete an assembly job has a mean of 50 minutes and Std. of 8 minutes. The supervisor intends to record 60 workers to complete one assembly job. What is the probability that the sample mean will be more than 52 minutes?

$$
\begin{aligned}
P(\bar{X}>52) & =P\left(Z>\frac{52-50}{8 / \sqrt{60}}\right) \\
& =P(Z>1.94) \\
\ldots \ldots{ }^{\circ} & ={ }^{\circ}-0.9738=0.0262 .
\end{aligned}
$$

σ unknown

- If $X_{1}, X_{2}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$, where σ is unknown,

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim t_{n-1}
$$

- t-distribution is symmetric distribution similar to normal but not normal. Its peak is lower and his tails are higher. As $n \rightarrow \infty$, the t-distribution converges to normal distribution.
- Example:

Suppose that the weights of new born babies are normally distribution with mean 3 kgs . A random sample of size 10 is taken and showed that its standard deviation is 2.
(a) Find the probability that the sample average is below 4.16 kgs .
(b) What is the 90th percentile of the distribution of \bar{X} ?

Cont./Example

(a)Find the probability that the sample average is below 4.16 kgs .

$$
\begin{aligned}
P(\bar{X}<4.16) & =P\left(t<\frac{4.16-3}{2 / \sqrt{10}}\right) \\
& =P(t<1.834) \\
& =0.95
\end{aligned}
$$

(b) What is the 90th percentile of the distribution of \bar{X} ?

Since

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim t_{9}
$$

the 90 th percentile of t-distribution with 9 degrees of freedom is 1.383 . Therefore the 90th percentile of \bar{X} is

$$
\begin{aligned}
& P_{95}=\mu+t_{0.10}(n-1) \frac{S}{\sqrt{n}} \\
& \ldots \ldots=.3+(1.383) \frac{2}{\sqrt{10}}=3.87 .
\end{aligned}
$$

Distribution of \hat{p}

- Let $p=$ probability of success (p could represent the proportion of smoking). A point estimate of p is

$$
\hat{p}=\frac{X}{n}=\frac{\# \text { of successes }}{n}
$$

- Note $X=$ number of successes $\sim \operatorname{Bin}(p, n p q)$. Then

$$
E\left(\frac{X}{n}\right)=\mu=\frac{n p}{n}=p
$$

and

$$
\sigma_{\hat{p}}^{2}=\operatorname{Var}(\hat{p})=\frac{n p q}{n^{2}}=\frac{p q}{n} .
$$

- For large $n, \hat{p} \sim N\left(p, \frac{p q}{n}\right)$. Further,

$$
\frac{\hat{p}-p}{\sqrt{p q / n}} \sim N(0,1)
$$

Example on \hat{p}

Example: 40% of the students at University of Jordan are smoking. If a sample of size 100 students is taken. Compute
(a) The probability at least 50% of the student are smoking.
(b) The probability that the sample proportion will be between 0.45 and 0.55 .

Solution:

(a) The probability at least 50% of the student are smoking.

$$
\begin{aligned}
P(\hat{p}>0.5) & =P\left(Z>\frac{0.5-0.4}{\sqrt{\frac{(0.4)(0.6)}{100}}}\right) \\
& =P(Z>2.04)=1-0.9793=0.0207 .
\end{aligned}
$$

(b) The probability that the sample proportion will be between 0.45 and 0.55 .

$$
\begin{aligned}
P(0.45<\hat{p}<0.55) & =P\left(\frac{0.55-0.40}{\sqrt{\frac{(0.4)(0.6)}{100}}}<Z<\frac{0.55-0.4}{\sqrt{\frac{(0.4)(0.6)}{100}}}\right) \\
& =P(1.02<Z<3.06)=0.9989-0.8461=0.1528 .
\end{aligned}
$$

Distribution of Sample Variance

- Chi-square distribution is not symmetric distribution and it is skewed to the right.
- If $Z \sim N(0,1)$, then $Z \sim \chi_{1}^{2}$-chi-square with 1 degrees of freedom.
- If $Z_{1}, Z_{2}, \ldots, Z_{n} \sim N(0,1)$, then $Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{n}^{2} \sim \chi_{n}^{2}$.
- Note that

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2} \sim \chi_{n-1}^{2}
$$

Example: In a sample of size $n=6$ is drawn from a population with $\sigma^{2}=10$. Find $P\left(S^{2}>18.4727\right)$.

$$
\left.\begin{array}{rl}
P\left(S^{2}>18.4727\right) & =P\left(\frac{(n-1) S^{2}}{\sigma^{2}}>\frac{5(18.4727)}{10}\right) \\
& =P\left(\frac{(n-1) S^{2}}{\sigma_{0}^{2}}>9.2364\right) \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{array}\right)
$$

Example:

Let $X_{1}, X_{2}, \ldots, X_{10} \sim N\left(\mu, \sigma^{2}=25\right)$. If S^{2} is the sample variance, find the 90th percentile of S^{2}.

Solution: We need to find the constant c such that $P\left(S^{2}>c\right)=0.10$. Using

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{9 S^{2}}{25} \sim \chi_{9}^{2}
$$

we have

$$
\begin{aligned}
& P\left(\frac{9 S^{2}}{25}>\frac{9}{25} c\right)=0.10 \\
& P\left(\chi_{9}^{2}>0.36 c\right)=0.10
\end{aligned}
$$

That is, $0.36 c=14.6837$ or $c=40.7881$.

Distribution of $\bar{X}-\bar{Y}$

- Let $X_{1}, X_{2}, \ldots, X_{m} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and Let $Y_{1}, Y_{2}, \ldots, Y_{n} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$. Then $\bar{X}-\bar{Y}$ is an estimate of $\mu_{1}-\mu_{2}$.
- $E(\bar{X}-\bar{Y})=\mu_{1}-\mu_{2}$
- $\operatorname{Var}(\bar{X}-\bar{Y})=\operatorname{Var}(\bar{X})+(\bar{Y})=\left(\sigma_{1}^{2} / m\right)+\left(\sigma_{2}^{2} / n\right)$.
- $\bar{X}-\bar{Y} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}\right)$. Therefore,

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}} \sim N(0,1)
$$

Example: The grades of section $1(m=50)$ are normally distributed with mean 60 and std. 5 while the grades of section $2(n=60)$ are normally distributed with mean 64 and std. 8 . What is the probability that the sample average of section 1 is less than the sample average of section 2 ?

Cont./Example

Solution:

$$
\begin{aligned}
P(\bar{X}<\bar{Y}) & =P(\bar{X}-\bar{Y}<0) \\
& =P\left(Z<\frac{0+4}{1.25}\right) \\
& =P(Z<3.2) \\
& =0.9993
\end{aligned}
$$

