Concepts of Statistical Inference

Testing Hypotheses

- Definition: A statistical hypothesis is a statement about the population. The hypothesis is either null hypothesis $\left(H_{0}\right)$ or alternative hypothesis $\left(H_{1}\right)$. Based on the data, we decide one of these hypotheses is true. That is,
(a) Reject H_{0} : the assertion is false
(b) Accept H_{0} : the assertion is true
- One of the decisions can be reached by using information from the sample observations. The process of testing hypotheses is similar to the procedures used in a court trial. The prosecution collects and presents all available evidence in an attempt to contradict "not guilty" hypothesis.
- Let H_{0} : not guilty vs. H_{1} : guilty

$$
H_{0} \text { is true } \quad H_{0} \text { is false }
$$

Reject H_{0}	Type I error	Oki
Accept H_{0}	Oki	Type II error

Errors

- Type I error: reject H_{0} when H_{0} true.
- Type II error: accept H_{0} when H_{1} is true.
- $\alpha=P($ Type I error $)=\mathrm{P}\left(\right.$ reject $\left.H_{0} \mid H_{0}\right)$.
- $\beta=P($ Type II error $)=\mathrm{P}\left(\right.$ accept $\left.H_{0} \mid H_{1}\right)$.
- The power function $\gamma(\theta)=\mathrm{P}\left(\right.$ reject $\left.H_{0} \mid \theta\right)$. The power of the test $\mathrm{P}\left(\right.$ reject $\left.H_{0} \mid H_{1}\right)$ indicate the strength and goodness of the test.

Example (Quality Control): Suppose that a production process has been in control (production process is stable) for some time and the proportion of defectives has been 0.05 . For monitoring the process, the staff decides to consider the process "out of control" if 2 or more defectives are found in a sample of 15 items.

Cont./Example

(a)The power function at $p=0.05,0.1,0.2,0.3,0.4$. The hypotheses can be written as $H_{0}: p=0.05$ versus $H_{1}: p>0.05$.

p	0.05	0.1	0.2	0.3	0.4
	0.171	0.451	0.833	0.965	0.995

(b) Compute α

$$
\alpha=P(X \geq 2 \mid p=0.05)=1-T(1)=0.171
$$

Note that $X \sim \operatorname{Bin}(15, p)$.
(c) Compute β at $p=0.1$.

$$
\beta=P(X<2 \mid p=0.1)=T(1)=0.549
$$

(d) Determine the rejection region so that $\alpha \approx 0.04$.

$$
\alpha=0.04=P(X \geq c)=1-P(X \leq c-1)
$$

Cont./Example

$\Rightarrow P(X \leq c-1)=0.96$. Then $c-1=2$ or $c=3$. That is, reject H_{0} if $X \geq 3$.
Example: Assume the age of electrical bulbs is normally distributed with Std. $\sigma=400$. The manufacturer claims that the mean age will last more than 5000 hours. To test

$$
H_{0}: \mu=5000 \text { vs. } H_{1}: \mu>5000 .
$$

we reject H_{0} if $\bar{X}>5075$
(a) Compute the significance level α

$$
\begin{aligned}
\alpha=P\left(\text { reject } H_{0} \mid H_{0}\right) & =P(\bar{X}>5075 \mid \mu=5000) \\
& =P(Z>1.88)=1-0.9699=0.0301
\end{aligned}
$$

(b) Compute β at $\mu=5045$.

$$
\begin{aligned}
\beta=P\left(\text { accept } H_{0} \mid H_{1}\right) & =P(\bar{X} \leq 5075 \mid \mu=5045) \\
& =P(Z \leq 0.75)=0.7734
\end{aligned}
$$

Cont./ Example

(c) Determine the rejection region for which $\alpha=0.10$

$$
\begin{aligned}
& \alpha=0.10=P(\bar{X}>c \mid \mu=5000) \\
& 0.10=P\left(Z>\frac{c-5000}{40}\right) \\
& \Rightarrow \frac{c-5000}{40}=1.28 \\
& c=5051.2
\end{aligned}
$$

That is, reject H_{0} if $\bar{X}>5051.2$.

p-value

- The p -value is the smallest significance level at which H_{0} is rejected based on the observed sample. Using the p -value, we reject H_{0} if p -value $<\alpha$ and we accept H_{0} if p-value $\geq \alpha$.

Example: Given $n=100, \bar{X}=80, \sigma=20$. Determine the p -value for testing $H_{0}: \mu=75$ vs. $H_{1}: \mu>75$.

$$
\begin{aligned}
p-\text { value } & ==P(\bar{X}>80) \\
& =P\left(Z>\frac{80-75}{20 / 10}\right) \\
& =P(Z>2.5)=0.0062 .
\end{aligned}
$$

For testing $H_{0}: \mu=75$ vs. $H_{1}: \mu \neq 75$.

$$
\begin{aligned}
p-\text { value } & ==2 P(\bar{X}>80) \\
& =2 P\left(Z>\frac{80-75}{20 / 10}\right) \\
& =2 P(Z>2.5)=2(0.0062)=0.0124
\end{aligned}
$$

