Acute Bacterial meningitis

Najwa Khuri-Bulos MD, FIDSA, CIC University of Jordan Adjunct Professor, Vanderbilt University USA

OBJECTIVE

To KNOW at the end of the presentation

- Epidemiology of meningitis and The most common organisms leading to bacterial meningitis
- Pathogenesis and risk factors of ABM
- Clinical presentation at the different ages
- Diagnosis
- Principles of Antibiotic therapy
- Role of Adjunct therapy
- Complications
- Outcome
- Care for contacts
- Prevention of meningitis

Epidemiology.

- 1.2 million cases/yr
- 135,000 deaths/yr one of the top ten, in developing countries
- Beyond the newborn period most important are three heavily encapsulated organisms
 - Strep Pneumo
 - H Influenza b
 - Neisseria meningitides
 - All have a polysacharide capsule which increases virulence and also confers immunity if anitbody to capsule is present
- Pneumo 38-17/100,000 population
- HIB 31-46/100,000
- Overall death rate 31-40/100,000

Pathogenesis and risk factors

- Note that the CSF is protected and sterile
- The CSF lacks the defense mechanisms in the blood, no neutrophils, no immuneglobulins
- The integrity of the Blood brain barrier is one of the most protective mechanisms and any disruption of that may lead to meningitis
- In the newborn the BBB is poorly developed. Meningitis may be present in up to 20% of sepsis

Table 4. Bacterial Meningitis in the United States (% of Total Cases)

Age	Organisms
0-4 weeks	Streptococcus agalactiae, Escherichia coli, Listeria monocytogenes, Klebsiella pneumoniae, Enterococcus spp., Salmonella spp.
4-12 weeks	S. agalactiae, E. coli, L. monocytogenes, Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis
3 months to 18 years	H. influenzae, S. pneumoniae, N. meningitidis

Adapted from Tunkel AR, 2000.

This is also applicable to our region

Acute Bacterial Meningitis in special hosts

Post Head trauma

Strep Pneumo H flu b.

Post Shunt, Neurosurgery

Staphylococcus epi/aureus, gram negatives

Acute bacterial meningitis

Bacterial pathogenetic factors

Polysaccharide capsule is common to all

pathogens that cause ABM

HIB, Strep pneumo, Neisseria in older

individuals

- In the newborn, E coli K1 antigen, Listeria monocytogenes and Gp b Strep all have capsules.
- Anticapsular antibodies=protection
- Colonization of the nasopharynx as well as the vagina in GBS also increases the risk because of increased exposure and invasion may occur

Host factors that increase the risk for meningitis

- Extremes of Age, in the newborn exposure to maternal GBS
- Male sex
- Def of C5-8
- Def in IgM , IgG
- Asplenia, congenital or surgical
- Head trauma
- Chronic disease, Diabetes, Addison, Hypothyroid, CF
- Renal insufficiency
- Children with facial cellulitis, periorbital cellulitis, sinusitis, and septic arthritis have an increased risk of meningitis.
- Poverty
- Attendance at day care and Crowding
- Mass gatherings include the Hajj which increase the risk of exposure and increase carraige

Neonatal meningitis

- More common in the premature
- More common in complicated delivery and any condition that increases sepsis in the newborn
- 20% of sepsis cases may be associated with meningitis due to poor BBB in the newborn
- The newborn also has immature immune defense mechanisms
- Maternal colonization with GBS and other bacteria may be more likely to lead to sepsis and meningitis due to colonization in the newborn due to maternal exposure

Epidemiology in neonatal meningitis

- GBS 50% of cases with risk being highest when mothers who are colonized with GBS.
- E Coli 20%
- Listeria 5-10% may be acquired transplacentally
- In developing countries ?? GNB
- HSV maybe acquired at birth, but may get sick in the second week of life leading to meningitis or encephalitis
- Enterobacter sakazakii was reported following ingestion of contaminated reconstituted formula In the newborn
- Enteroviruses may cause up to 3% of cases with sepsis and meningitis in the newborn

Prognosis in the newborn

- Death 10% in bacterial meningitis and 15% in HSV
- HSV 1 and 2 same mortality
- Morbidity with increased CP,MR, Seizures,microcephaly
- 5-20% epilepsy
- 25-50% significant problems with language, motor function or cognition
- Poor indicators include LBW, significant leukopenia or neutropenia,
 High CSF protein
- Delayed sterilizaiton of the CSF and coma
- Seizures lasting longer than 72 hours or hypotension needing inotropes predict moderate to severe disability or death
- MRI must be done on all neonates following meningitis

Acute Bacterial Meningitis

ABM beyond the newborn period

HIB.

Strep Pneumo

Meningococcus

All have a polysaccharide capsule which is a major factor in invasiveness

Hemophilus influenza b Gram negative pleomorphic Many shapes cocco bacillary

Acute Bacterial Meningitis

H Flu B

- H influenza serotype a-f, gram negative pleomorphic bacterium
- Type b is the only one leading to invasive disease
- Polyshaccharide capsule determines serotype and
- pathogenecity, Anticapsular antibodies are protective
- Maternal antibodies protect the newborn for the first few months
- HIB vaccine is made of the conjugate polysaccharide and is given
- as a conjugated vaccine at 2 months of age
- Transmission of HIB is usually acquired by droplet by contact from
- others, NP HIB carriage is uncommon only 4%
 - 2-3 months peak age of risk in <2 years, much less after 6 years of age even in the absence of vaccination since asymptomatic infection leads to antibodies

Estimated Incidence* of Invasive Hib Disease, 1987-2000

The impact of vaccination Hib meningitis 1999-2009 Jordan before and after vaccination

Streptococcus pneumoniae

- 90 different serotypes
- Capsule is principle virulence factor
- Antibodies against capsule = protection
- Each serotype in vaccine = antibody
- Limited serotypes cause majority infections
- 14,6B,19F,18C,23F,4,9V = 80% infections
- PCV7 licensed in 2/2000
- 2,4,6 and 12 -15 mos, high risk 24 59 mos

Strep pneumo

- Carrier state is common
- No increased risk to contacts
- Disease more common and severe in certain hosts
 - Sickle cell patients (functional asplenia)
 - Nephrotic syndrome
 - Asplenia
 - IgG def
 - Properdin deficiency
 - Most common cause of meningitis with basal skull fracture

Neisseria meningitidis (meningococcus

- Meningococci are diplococcal bacteria surrounded by a polysaccharide capsule¹
 - The polysaccharide structure determines the pathogen's serogroup (SG)¹
 - Six (A, B, C, Y, X, and W*) of 13 known SGs account for the majority of epidemics worldwide³

Polysaccharide capsule^{1,4}

¹Pollard. In: Harrison's Principles of Internal Medicine. 18th ed. 2012;chapter 143; ²Harrison. Clin Infect Dis. 2010;50(Suppl 2) ³WHO. http://www.who.int/mediacentre/factsheets/fs141/en/; ⁴Image adapted from Criss. Nat Rev Microbiology. 2012;10(3) ⁵Harrison et al. Emerg Infect Dis. 2013;19(4)

^{*}W-135 has been replaced with W per new nomenclature.5

Pathogenesis of meningococcal meningitis

- Colonization of the nasopharynx occurs with close contact with asymptomatic carriers.
- Usually around 3-5% are NP carriers but this increases with crowding up to 40%. Usually this occurs in the first few days of exposure
- Maximum risk of invasive disease occurs in the first few days after acquiring the carrier state.
- Disease is more common in patients with immune deficiency states and patients who have been splenectomized and also patients receiving certain drugs that interfere with complement such
- This risk for developing meningitis is higher in patients who have viral infection and in infants < 2 years of age
- Severe invasive disease occurs very fast and there is need to have antecedent antibody to protect from this infection which may lead to meningococcemia or meningitis

Neisseria meningitides

Neisseria meningitides

- Serotypes, a,b,c,x,y,z,29E,W135
- Anticapsular antibody=protection
- A in Africa and the ME
- B,C in the USA, Europe
- Outbreaks Q 7-10 yrs
- Infants 6-12 months and adolescents are at high risk especially in dry season, and following URI
- Mass gathering including Hajj increase the risk of exposure and disease.

Neisseria meningitides

- Carrier rate 1-15%. Interepidemic 3%
- Family contacts 40-50%
- Risk of disease in contacts 1%
- Pts with C5-C8 def, have very bad disease
- Early colonization with Neisseria lactamicus seems to be protective

Listeria monocytogenes

- Most common in the newborn and older than 50 years of age
- Serotype 1a,1b and 1Vb most common
- May affect the immune compromised and pregnant women as well
- May be associated with consumption of raw milk and unpasteurized cheese.
- Signs and symptoms may be subtle and low grade, the diagnosis may be delayed.
- Misidentified as diphtheroid and alpha strep

How do we diagnose meningitis

- Classically fever, headache, stiff neck and positive meningeal signs are present
- Clinical presentation depends on age and Classical signs may be absent at extremes of age,
- However changes in mental status expecially headache are present.
- In the infant paradoxical irritability may be present
- Bulged fontanelle is a late sign
- Must maintain a high sense of suspicion

Table 1. Common Presenting Symptoms and Signs in Children (<14 years old) with Bacterial Meningitis

Symptom/Sign	Relative Frequency (%)
Fever	85-99
Irritability	34-65
Meningismus	67-96
Altered sensorium/comatose	7-12
Kernig's sign	N/A
Brudzinski's sign	N/A
Vomiting	18-59
Seizure	11-30
Focal findings	7

Adapted from Kaplan SL, 1999.

Diagnosis of ABM

- CSF examination is definitive
- Other tests are only adjunct BUT cannot be diagnostic
- However in patients who are very ill or if it is not possible to perform an LP it is acceptable to start treatment with antibiotics till that is possible
- The CSF will remain abnormal for several days afterwards and can make the diagnosis later. DO NOT WITHHOLD THERAPY.

GUIDELINES FOR CT SCAN OF HEAD PRIOR TO LUMBAR PUNCTURE (B-II)

- DO NOT DELAY THERAPY DUE TO CT SCAN
- ALL Patients must have an eye examination for papilledema
- CT SCAN or MRI must be done if
 - Age is older than 60 years
 - Patient has Immunocompromised state
 - Patient has New onset seizure
 - Patient has Altered consciousness
 - Patient has Papilledema
 - Patient has Focal neurologic deficit

Once assured of Safety obtain CSF

- Cell count and diff
- Glucose and Protein
- Culture and gm stain
- Other tests such as PCR for bacteria and viruses are of help
 But DO NOT DELAY empiric therapy while waiting for results

CSF FINDINGS IN BACTERIAL MENINGITIS (

CSF Parameter Typical Findings

Opening pressure 200-500 mm H₂O

White blood cell count 1000-5000/mm³

Percentage of neutrophils >80%

Protein 100-500 mg/dL

Glucose <40 mg/dL

CSF:serum glucose ≤0.4

Note of caution

- The total WBC count cannot definitely distinguish between bacterial and other causes.
- At one time, it was generally believed that a predominance of polymorphonuclear leukocytes (PMNs) pointed to bacterial meningitis, but this has been an unreliable indicator; bacterial meningitis may also present with a lymphocytic predominance.
- Attempts to differentiate bacterial and aseptic meningitis on the basis of percentage and absolute number of premature neutrophils (ie, bands) have not yielded diagnostic results.^[15]
 - Kanegaye JT, Nigrovic LE, Malley R, Cannavino CR, Schwab SH, Bennett JE, et al. Diagnostic value of immature neutrophils (bands) in the cerebrospinal fluid of children with cerebrospinal fluid pleocytosis. *Pediatrics*. Jun 2009;123(6):e967-71. [Medline].

CSF analysis, important considerations A cautionary note, IDSA guidelines

- Both N meningitidis meningitis and S pneumoniae meningitis are known to give normal CSF results. In an evidence-based article, meningitis was found to exist in 10% of children who have normal CSF analysis.
- Several gram-negative bacteria and higher serotypes of S
 pneumoniae have capsular antigens that cross-react with H
 influenzae type b polyribophosphate.
- Capsular antigens of group B meningococcus cross-react with K1containing *Escherichia coli*. Gram stains of CSF are more sensitive than these rapid diagnostic tests for the detection of *N meningitidis*.

CSF GRAM'S STAIN

- Identifies causative microorganism in 60-90% of cases, with a specificity of ≥97%
- Likelihood of positive Gram's stain depends upon CSF concentration of microorganisms, specific bacterial pathogen, and prior antimicrobial therapy
- False-positive results may result from observer misinterpretation, reagent contamination, use of occluded lumbar needle (skin contamination)
- Rapid, inexpensive, highly specific (A-III)

CSF LATEX AGGLUTINATION IN CULTURE-PROVEN BACTERIAL MENINGITIS no need to perform not reliable

Microorganism	Sensitivity (%)
---------------	-----------------

Haemophilus influenzae type b 78-100

Neisseria meningitidis 50-93

Streptococcus pneumoniae 67-100

Streptococcus agalactia 69-100

Gray LD, Fedorko DP. Clin Microbiol Rev 1992;5:130.

1 Test. 14 Targets. All in about an hour.

Bacteria

Escherichia coli K1
Haemophilus influenzae
Listeria monocytogenes
Neisseria meningitidis
Streptococcus agalactiae
Streptococcus pneumoniae

Viruses

Cytomegalovirus (CMV)

Enterovirus

Herpes simplex virus 1 (HSV-1)

Herpes simplex virus 2 (HSV-2)

Human herpesvirus 6 (HHV-6)

Human parechovirus

Varicalla zoetar virue (\/7\/)

PCR testing now available as multiplex

Acute Bacterial Meningitis

Treatment of acute bacterial meningitis

Principles of antibiotic therapy

- Choice of antibiotic is usually empiric and is dependent on epidemiologic considerations.
- Modify once results are back accordingly.
- Must give empiric antibiotic therapy immediately
- Must cover ALL possible pathogens no matter how small is the risk of infection
- Must choose a bactericidal agent
- Must choose an agent that crosses the CSF very well and have a good MIC against the organisms

GUIDELINES FOR TIMING OF ANTIMICROBIAL ADMINISTRATION

- "time is brain"
- First dose no later than 2 hours of contact
- If taking care of patients in a remote location and cannot obtain CSF give antibiotics BEFORE transfer
- CSF abnormality will persist for a few days
- Prior antibiotics only interfere with culture
- Hence DO NOT DELAY giving antibiotics for referral of patients if meningitis is a possibility

EMPIRIC ANTIMICROBIAL THERAPY OF PURULENT MENINGITIS (A-III)

Age	Antimicrobial Therapy	
<1 month	Ampicillin + cefotaxime; or ampicillin + an aminoglycoside	
1-23 months	Vancomycin + a third generation cephalosporina	
2-50 years	Vancomycin + a third generation cephalosporina	
Older than 50 years	Vancomycin + ampicillin + a third generation cephalosporina	

^acefotaxime or ceftriaxone IDSA guidelines

EMPIRIC ANTIMICROBIAL THERAPY OF PURULENT MENINGITIS (A-III)

Predisposing Condition

Immunocompromise

Basilar skull fracture

Head trauma or after neurosurgery, or CSF shunt

Antimicrobial Therapy

Vancomycin + ampicillin + cefepime or ceftazidime

Vancomycin + a third generation ceph

Vancomycin + either ceftazidime, cefepime, or meropenem

acefotaxime or ceftriaxone

TARGETED ANTIMICROBIAL THERAPY IN BACTERIAL MENINGITIS (A-III)

Microorganism

S. pneumoniae

N. meningitidis

Antimicrobial Therapy

Vancomycin + a third

generation cephalosporina,b

Penicillin G, ampicillin, or a

third generation ceph

L. monocytogenes

Ampicillin or penicillin G^c

acefotaxime or ceftriaxone

baddition of rifampin may be considered

caddidion of an aminoglycoside may be considered

'ANTIMICROBIAL THERAPY IN BACTERIAL MENINGITIS (A-II, A-III)

Organism

Streptococcus pneumoniae

PCN MIC < 0.1 µg/mL

PCN MIC 0.1-1.0 μg/mL

PCN MIC ≥2.0 μg/mL

CTX MIC \geq 1.0 µg/mL

Antimicrobial Therapy

Penicillin G or ampicillin
Third generation cephalosporina
Vancomycin + a third
generation cephalosporina
Vancomycin + a third
generation cephalosporina

acefotaxime or ceftriaxone

'ANTIMICROBIAL THERAPY IN BACTERIAL MENINGITIS (A-I, A-III)

Organism

Neisseria meningitidis

PCN MIC $< 0.1 \mu g/mL$

PCN MIC 0.1-1.0 μg/mL

Haemophilus influenzae

β-lactamase-negative

β-lactamase-positive

Antimicrobial Therapy

Penicillin G or ampicillin

Third generation cepha

Ampicillin

Third generation cepha

acefotaxime or ceftriaxone

ANTIMICROBIAL THERAPY IN BACTERIAL MENINGITIS (A-II, A-III)

Organism

Enterobacteriaceae

Pseudomonas aeruginosa

Streptococcus agalactiae

Listeria monocytogenes
Staphylococcus aureus

MRSA or *S. epidermidis*

Antimicrobial Therapy

Third generation cepha, or meropenem

Ceftazidime^b, cefepime^b, or meropenem^b

Ampicillin or

penicillin Gb

Ampicillin or penicillin G^b

Nafcillin or oxacillin

Vancomycin

baddition of an aminoglycoside should be considered

ADJUNCTIVE DEXAMETHASONE RATIONALE

- The subarchnoid space inflammatory response during bacterial meningitis is a major factor contributing to morbidity and mortality
- Attenuation of this inflammatory response may diminish many of the pathophysiologic consequences of bacterial meningitis (e.g., cerebral edema, increased intracranial pressure, altered cerebral blood flow, cerebral vasculitis, neuronal injury)

The Guideline on ADJUNCTIVE DEXAMETHASONE IN BACTERIAL MENINGITIS

- Neonates (C-I) (not proved)
- Infants and children with Haemophilus influenzae type b meningitis (A-I)
- Infants and children with pneumococcal meningitis (B-I)
- Adults with pneumococcal meningitis (A-I)
- Patients with pneumococcal meningitis caused by highly penicillin- or cephalosporin-resistant strains (B-III)
- Administer at 0.15 mg/kg every 6 hours for 2-4 days concomitant with or just before first antimicrobial dose

Prognosis mortality

- Overall mortality for bacterial meningitis is 5-10%.
- In neonates, mortality is 15-20%, whereas in older children, it is 3-10%.
- S pneumoniae meningitis 26.3-30%;
- Hib meningitis 7.7-10.3%;
- N meningitidis has the lowest, at 3.5-10.3%.
- However meningococcemia is worse and may be associated with a very high rate unless identified in time

Duration of antibiotic therapy

N meningitidis7 d

H influenzae7 d

S pneumoniae 10-14 d

S agalactiae (GBS)14-21 d

 Aerobic gram-negative bacilli 21 days or 2 wks beyond the first sterile culture (whichever is longer)

L monocytogenes21 d or longer

End of therapy

- No need to repeat CSF if uncomplicated course
- Repeat CSF in the neonate and if complicated
- CT or MRI must be performed in the newborn at discharge to rule out abscess or hydrocephalous
- Brain stem evoked potential for hearing evaluation must be done for all individuals recovering from meningitis

Prognostic factors, poor prognostic factors

- High Bacterial load> 10^{7/}ml
- Age, Neonatal mortality 15-20%, infants 2-5%
- Seizures after 4th day of admission
- Focal neurological deficit
- Deteriorating level of consciousness
- Hypotension and coma at admission
- S pneumo has the worst prognosis
- Inappropiate ADH release
- Delayed sterilization of the CSF, this should occur after 24 hours of therapy in children and < 4 days in the newborn
- Developing countries worse outcome

Other Prognostic factors in ABM CFR (Case fatality rate)

Developed countries Underdeveloped

S pneumo 20% 50%

Sequelea 30% 60%

Older adults 40%

Care of contacts of meningococcal meningitis

- Prophylaxis should be given to contacts of cases of HIB and Meningococcal infections
- Prophylaxis for Meningococcal meningitis
 - Give to ALL household or very close contacts regardless of age
 - Risk of secondary case is 1%
 - Rifampicin, or ceftriaxone, or ciprofloxacin
 - PLUS meningococcal vaccine

Complications of acute bacterial meningitis

Death3-5%

Subdural effusion/empyema

Hearing deficit 7-30%

Decreased IQ 30-50%

- Seizures
- Hemiparesis,
- Other neurological deficit

Secondary cases H flu b

Risk of disease is age dependent

Secondary disease in first month is

0.3%

600X that general population in young children

<2years old

3.7%

>6 yrs

 \mathbf{O}

Secondary cases

64%in 1st wk

20% in 2nd wk,

16% in 3rd wk.

Prophylaxis for contacts of H flu b

Rifampin

20mg/kg/dX4 d

Give to ALL household contacts adults and children, if child <4 years of age and not vaccinated or if the child is less than one year of age

Day care???

Prevention of infection in the community

- Conjugate polysacharide vaccines should be provided for these organisms
 - H flu b for children < 6 years of age</p>
 - Strep pneumo
 - Meningococcal vaccines
 - These are conjugated to a protein antigen in order to be effective in children < 2years of age

Recent trends in meningitis

- Decrease in HIB to almost nill after vaccination
- Decrease in pneumo after PCV 7 and 13 vaccines in countries that use them
- Note that conjugate vaccines also prevent NP carraige hence also decrease exposure and magnify benefit
- Decrease in GBS with antenatal screening and treatment. In our region ? Increase must institute the GBS screening and perinatal antibiotics to mothers
- Median age of cases is also increased
- No change in CFR however 15% in the adult

Conclusions

- Acute bacterial meningitis remains a major cause of mortality and morbidity despite excellent antibiotics
- Epidemiologic factors depend on availability of vaccination, degree of development and crowding as well as availability of good health system
- Host factors play a major role in brain damage, need more drugs against this
- Dexamthasone adjunct therapy now recommended for children and adults

Conclusions

- Outcome may be more guarded with subtle brain damage and decreased IQ
- Prevention is primary, vaccines for all three pathogens are now present and we should try to give to at risk individuals
- In jordan we have only introduced N meningitides for the pilgrims and the military recruits and HIB for all children
- Pneumo must be introduced soonest

Molecular pathogenesis

- Pili by meningococcus help attach to the mucosa
- Laminin receptor for the organisms does play a role. This is inducible on endothelial surfaces and allows organisms to bind to the endothelium and enter into the CNS
- Organisms that could not bind to the laminin receptor do not cause meningitis

Pathogenesis continued

- Bacteria gain access to the CSF and CNS by the blood stream unless there is trauma and disruption of the anatomy
- Usually organisms enter the blood stream from the nasopharynx
- Colonization of the nasopharynx antidates bacteremia
- Viral infection of the upper respiratory tract may increase the risk of bacterial entry into the blood
- BBB plays a major role in protecting the CNS,

Recent advances in pathogenesis

Pathogenesis stage	Host defense	Pathogen strategies
Mucosal colonization and invasion	Secretary IgA Ciliary activity	IgA protease Adhesive Pili, neisseria
Blood stream survival	complement	Evasion of alternate complement pathway by polysacharide capsule, innate immunity
Cross blood brain barrier	Cerebral endothelium	Usurp laminin-R Potential role of MIF, TNF
CSF survival	Poor opsonic activity	Bacterial replication

Neonatal meningitis common organisms at different time periods

- Early onset<3-7 days,</p>
 - GBS,E Coli, Listeria, enteroviruses

- Late onset >7 days
 - GBS, E Coli, Other GNR, Listeria
 - Staph, Enterococcus, Candida, HSV, Enteroviruses

Prevention of GBS sepsis and meningitis new Guidelines 2020

- The optimal window for antenatal GBS screening has been changed to 36 0/7 to 37 6/7 weeks' gestation instead of beginning at 35 0/7 weeks' gestation. The correlation between antenatal GBS colonization results and colonization status at the time of delivery decreases significantly when the culture-to-birth interval is longer than five weeks; therefore, moving antenatal culture timing to 36-37 weeks optimizes the value of the screening result up to 41 weeks' gestation.
- It is recommended that GBS IAP be administered to the following: all laboring women with GBS colonization detected by antenatal culture; those with GBS bacteriuria detected during the pregnancy; those who previously delivered a newborn with GBS disease; and women with unknown GBS status who present with preterm labor or preterm, prelabor rupture of membranes (ROM) prior to 37 weeks' gestation.
- Women who present at >37 weeks' gestation with unknown status should be administered GBS IAP if
 risk factors develop (duration of ROM 18 hours or intrapartum temperature of 100.4°F [38°C].
 Additionally, women with known GBS colonization in a prior pregnancy may be offered IAP if status is
 unknown at >37 weeks' gestation given that such women have increased risk of colonization in the
 current pregnancy.
- Penicillin G remains the recommended antibiotic for GBS IAP; ampicillin is an acceptable alternative.

Invasive Meningococcal Disease Is Difficult to Diagnose and Rapidly Lethal

- Flu-like nature of early symptoms makes a definitive diagnosis challenging¹
- Rapid progression, with death in as little as 24 hours^{1,2}

4–8 Hours^{1,2} Nonspecific

Fever, irritability,
nausea or vomiting,
drowsiness, poor
appetite, sore throat,
coryza, general aches

12–15 Hours^{1,2} Characteristic

Hemorrhagic rash, neck stiffness, photophobia 15–~24 Hours^{1,2} Late

Confusion or delirium, seizure, unconsciousness; possible death

Hospital admission at median of ~19 hours¹

Time Is of the Essence

- Early symptoms are nonspecific
 - Fever, headache, nausea, vomiting, loss of appetite
 - Mimic symptoms of common viral illnesses
- Characteristic symptoms occur later
 - Hemorrhagic rash, neck stiffness, photophobia
 - Typically develop approximately 12-15 hours after symptoms begin¹ Rapid progression, De within 24 hours of symptom onset^{1,2}
 - Fever and Petechia should be treated as if meningococcemia until proved otherwise

Getty Images/Creative Cro

Although Rare, Meningococcal Disease Is Mostly Sporadic, Affects All Ages, and Is Associated with Significant Morbidity and High Case Fatality Rates Inspite ¹⁻⁴

Treatment with antibiotics 10% die and 10-20% have sequelae

Primary prevention is inhibiting the development of the disease before it occurs¹