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Impulse And Momentum

The equs of impulse and momentum are obtained by integrating
the equ of motion wrt time ,whereas, the work-energy equ
were obtained by integrating the equ of motion wrt
displacement.

Impulse and momentum equs are used to solve problems in
which forces act over specified periods of time



Linear Impulse And Linear Momentum




-The basic equation of motion for the particle is :-

XF=mv’ =d/dtimV) =G ‘=————=>  YF=G’

-G IS the linear momentum , G=mV

The resultant of all forces acting on a particle equals its time rate of change of linear
momentum unit of G 1s kg.m/s = N.s

-The resultant force *F and G’ directions coincide with the direction of acceleration
YF,G and (V=a) have the same direction scalar equations of G’
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YFx = G’x YFy =G’y YFz=G’z
-To find the effect of XF over a fiuire period of time , integrate XF = G’ wrt time .

YF=d/dt(G) = XFdt= dG

—_— [TFdt= [dG = G1-G2 = AG
— G2 =G1+ ] ZFdt

Cer=mvz | [ ciemvi )

-Linear Impulse is determined as the product of force and time . The total linear impulse on an m
equals the corresponding change in linear momentum of m .



-The scalar equations of AG=] XFdt are :-

JZFxdt = (mVx)2 - (mVx)1

JZFydt = (mW)2 - (mW)1 ____ These Impusle — Momentum equations are
independent

JZFzdt = (mVz)2 - (mV2)1

-Impulse = | F dt = area under the curve

F

1= [?F(t)dt
l
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Consevation of linear Momentum (G)

-G is conserved if XF =0 during the time interval . 2 G remains constant

-G can be constant in some directions and changing in other directions .

-For two interacting particles (aand b ), with no external forces :-

A(Ga+Gh)=0 > | AGtot=0 > | c1=G2




Example :-
Find ;

a) t1 when the skip reverse ii's
direetion ?

b) Velocity of the skip at i=8 sec




Solution :-

a) Skip reverse direction when V=0
Assume that V=0, at t=4 +At
Use Impulse-Momentum equation

t1
Jy X fx dt =mAv,

=2*0.5*4*600+2*600*At -150*9.81*cos 60 *(4+ At)
=150(0-(-4)) => 464 At = 1143 => At=2.46s

t1=4+2.46 = 6.465

b) [ X fx dt =m A v, =>2%0.5%4*600+2*(8-4)*600-150*9.81*cos 60*8
=150(v — (-4)) =>
150v =714 => |V=4.76 m/s

fflz fx dt =m Av, =>(2*600*(8-6.46)-150%9.81* cos 60 *(8-6.46)) =>
150(v-0)=150v {same result }




Angular Impulse and angular momentum

For particle P:

H0=7')Xm1_7>

T Cross product

v=r’
G=m¥v
T
Linear Momentum

The angular momentum
H,is defined as the
moment of the linear

momentum mv about o
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H, is a vector perpendicular
to plane A, right hand rule is
used to determine
the sense of H
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Scaler components of angular momentum :

Ho=FXmvV =m (xi+yj+ zk)*(v, xi +v, yj + v, zk)

=m [x vy k —xv,j —yvxi<1+yvzi+zvxi—zvy i]

A

B i J Kk
=>Ho=m|x y z
Vx Vy Vg

Hy =m(vy y — vy 2) Hy,=m(vy z—V,X)

H, =m(vy x — vy y)



Angular Impulse and angular momentum

Hy = mv,y- mv,z
=m(v,y- v, 2)

%k 3k sk sk %k sk ok %k %k sk ok %k sk ok ok ckok ok

Hy=mv,z-m

=m(v,z- V;X)
ok sk vk s sk ok sk e ok ok ok ok ok ok ok ok

Hz= mv,x- mv,y
=m(vyx — v, Y)
Hy :unitis N.m.s

* moment M, and angular momentum H,
kkkkkkkkkkkkkkkkkkkkkkk
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Acceleration

The moment of all forces equals the rate of change of angular momentum:

2, Mo = H
zMox = Hox ZMoy = Hoy EMOZ = Hoz

For a period of time integrate the equation:

- dﬁo _, .
ZMO:H = —>2M0dt=dHO -
o

H01 - Fl XmﬁlHOZ - FZ Xmﬁz

Scalar components:

Angular impulse (N.m.s):

The total angular impulse equal the change in angular momentum:



Constant Acceleration

= X- component equation:

[ Montt = o)z — o)

m(v,y — vyz)z —m (vgy - vyZ)l

[ Martt = Bz = e




For the figure in page (51)
ftth M.dt=H.—H., == f;lzz F 1 * sin®© dt = mv2dz2— mvid:

Conservation of Angular Momentum :

If the resultant moment > M.=0 during At === YM.=H.=0 ===) H. = Constant
Angular momentum is conserved.

H. Could be conserved about one axis. But not about another axis.

For two particles a & b, with interactive forces F and —F between them ;

Moment of unbalanced forces

M.L-:d-“i‘ M;}:- YM.=0 Ma=-Mb



The principle of conservation of angular momentum :

t2
AH: = Ha — Ha = r Z Ma dt add the two equations to get

AHs = Hez — Ho: = thz > Mb dt AHa+AHb =['"Y Madt + [ Y, Mbdt =0
(Ma=-Mb)
:> AHa + AHb — O

|:>AH :O —> H.1:H.2

total




Kinetics of Particles
Special Applications

Impact
It refers to the collision between two bodies .

a) Direct central impact :

Before Impact

Maximum deformation
During impact

After Impact
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Apply the law of conservation of linear momentum :
Mwv1 + M2V2 = Mwv's + Mav’2

Define the coefficient of restitution e as :

__ Magnitude of the restoration impulse

- Magnitude of the deformation impulse

For Particle1 —

o) =

total time of contact
ad

Jp Frat _mi[—vi—(=vo)] _

f(fo Fdde mi[—-vo—(—vi)]

Deformation time

Vo — V'i

Vi — Vo

Deformation period

20



ma m2 Restoration period
FOR PARTICLE 2 : /4 |45

e = Ji Fr - _ (V' —Vo) _ (V2 = Vo)
[fopy dt )V =V2) (o= V2)

The change of momentum (and hence AV) should be in the same direction as the impulse (and hence the force)

i =e(2) _ (VO_Vll) _(VIZ_V()) ‘ VO_V,1+V,2_VO _ VIZ_Vll

Vi=Vy)  (Vo—Vy) Vi—-Vy+ Vo=V, V=1

e

relative velocity of separation V', —V'y

relative velocity of approach V=1,

If e =1 == elastic impact ====) no energy loss
If e = 0 == inelastic(plastic) impact ====) max energy loss (particles cling together after impact)
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the initial and final velocities are not parallel
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J

Given: o
___1':1/1) N 1(V1)t 1(V 2) N 1(V2 lf'".l‘

_.:.':' (1) (V20 (2" )y

M)y +m2(v2)n=mi(yy) +m:

L
e

Y¢



Conservation of momentum in the (t) direction

M;(v1) =M;(v'y)
M, (vy) = My (v',)

Coefficient of restitution (e)

(w1,)—(vr4) * Note : Finally (6'; & 6',)
= are found using the velocity
(v2)=(v1) components.

Relative motion

*It’s the consideration of a moving reference system*

Equations of relative motion: 3;/ ’
-- B

aA + aB/A
= m aB

m * (ay + aB/A)

e
0’ Body-fixed Coordinate System

==l

Inertial Coordinate System




Problem 3/74

The cars of an amusements park have a speed (v, =22m/s)
at A, and aspeed ( vg=12m/s) atB.Ifa(75-kg) rider sits
on a spring scale (which registers the normal force exerted on
it). Determine the scale readings as the car passes points A and

B, assume that the person’s arms and legs do not support
appreciable forces.

Solution :
At point A : At pointB :
N —m*a N E—m* o
l75(9.81)N LF=m*a l 5081 YF=m*a
® 22 122
N,-75(9.81) = 75% —Ng+ 75(9.81) = 75—

w t(s)
INA

N, = 1643 (N)

®
w t(s)
INB

Npg = 195.8 (N)

20

Note: static normal force equals the weight (75).(9.81) and it equals 736(N)
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Problem 3/129 :

The ball is released from position A with a velocity of (3 m/s) and swings in a vertical plane at the bottom
position , the cord strikes the fixed bar at B, and the ball continues to swing in the dashed arc .
Calculate the velocity Vc of the ball as it passes position C.

Solution :

Ui-2= AT ;

N\ g (0.8-1.2 cos (60°)) = 0.5m (V2 - 32) ;

9.81(0.2) = 0.5 (Vc* - 9) ;

V2 = 12.92

Problem 3/129

Vc = 3.59m/s




Problem 3/123:

A (40 = Kg ) boy starts from rest at the bottom A of a 10 — percent incline and increases his speed at a constant rate to 8
km/h as he passes B, 15m along the incline from A .
Determine his power output as he approaches B .

Solution :

VB=8/3.6 = 2.22 m/s
VB2 = Va2 + 2a AX
=0 +2a AX

a=2.22%2(15) = 0.1646 m/s?

® = tan”'(0.1) = 5.71°
Problem 3/123

_'ﬂ’>z F =ma
F—40(9.81)sin (5.71°) = 40 (0.1646)
F=45.6NN

P=FV = 45.6(2.22)
P=101.4W




Problem 3/150 :

The springs are undeformed in the position shown . If the 6 Kg collar is released from rest in the position where the lowest
spring is compressed 125 mm .
Determine the maximum compression XB of the upper spring .

Solution :

> stablish datum at release point

TA + VA = TB + VB
0 + 0.5(KaXa?) = 0 +0.5(KB.XB?*) + mg (Xa+d+X8) ;

0.5(8500)(0.125) > = 0.5(1750)X8* + 6 (9.81)(0.125+0.5-0.15+XB)

XB = 0.1766m = 176.6 mm

(The collar moves a distance of 0.5-0.15=0.35m)

Problem 3/162




Problem 3/216 :

The 3 Kg sphere moves in the x-y plane and has the indicated velocity at a particular instant .
Determine its:- (a) linear moment.

(b) angular momentum about point O.

(c) kinetic energy .

Solution :

;

| —> —>

| 03_“g____ (@) G = mv

| p \150 = 3.4 (cos(45°)i + sin (45°)j)

| P S = 8.49i - 8.49j Kg.

|

| —_— —> —> —> —>

:// (b) Ho =r * mv =r * G

- = 2(cos(60°)i +sin(60°)j) x (8.49i - 8.49j)
i * =2[-4.25k - 7.35k]

- _ 2
Problem 3/216 =-23.2 Kg.m’/s

(c) T = 0.5 mv? =0.5(3)(4?)
=24)
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*Problem 3/250 *

The steel ball strikes the heavy steel plate with a velocity v.= 24 m/s at angle of 60* with the
horizontal . If the coefficient of restitution is e=0.8 . Compute the velocity v and its direction 0
with which the ball rebounds from the plate .

. A Y | *Solution*
“ i
O ’i 7 v *dluripg impact )_ /= =0 5o no change in X
, velocity .
V. | ‘ : y
g/ Nl ﬁ o *component.
Sy Vicosl) = 24(cosb0) = 24(0.5) = 12m /s

. 1

Iny - diriction

V2 —vY 0 — v*sin® . v*sin®
EF =— — = =08 = ———
V2 -1 —u #* cosal) — () U * cosa)

Uk sine

=== pxsne® = 1663 >>> vxcos® = 12

8 —
24 * cos3l
Uk s1nO - 16.63

Uk cosed

—tan® =130 >>> 6 = hH4.2

=

12 12

V= — = — = 20.5m/s
rs0 coshd.2
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#chapter 4

(Kinetics of systems of particles)

*the principles applied to a single particle will be extended to a system of participles.

*Arigid body is defined as a solid system of particles , where in the distance between participles
remain unchanged .

-example of rigid-body problems:
Machines , land & aircraft , rockets , and space-craft.

*A non-rigid body could be a solid body which changes shape with time due to deformation . It
could also be a liquid or gas.

**Generalized Newton’s 2nd law

F3 external forces : resulting from external bodies ,gravitational , electric , or

¥s magnetic .
Fa /
' \ VW f3 internal forces (reactions)
Cs
€. M is center of mass of the participles




vy

* external
S mi =

* intéxpal

> Envelope of
mass system

System
boundary

m ok r = E VE RS
where
1 = E 1111

*total system mass they are n particles.




Applving Newton’s 2"9 law to the system :

F1+F2+F3+.......... +fl+f2+f3+........ = Y.m; - ¥; «—— Acceleration of mi

For all particles :

/ =0 (internal forces cancel out)
YR T

External Internal

Since mr=ym; r, mmssm) mr=ym; i
Total mass Position vector O;\I\/Iass of particle
the center of mass

Position vector of
particle

Generalized Newton’s 2"9 |law of motion
‘ Z F=mr =ma | foramasssystem.Or equation of
Va motion of m . Or principle of motion of
Acceleration of the’/
center of mass of the the Mass Center

system




Component form:

Y F : Generally does not pass through G.

Work — Enerqy :

m; - (U1<)i = ATy ) 1/2mi77i2

For the entire system : Y. (U;_5); = Xim, AT;

R

Work done on mi by external forces only




Work done by internal forces is zero because it cancels out .
If gravity and elastic energy is included [non-rigid body]:

Ui_, = AT + AV, + AV
U;_,: work done on a non-rigid system.
AT :kinetic energy .

AVy: gravitational potential energy

AV, elastic potential energy .

AT + AV, + AV,
L J

Y
AE
AE:chang in mechanical energy .

OR
U]’-_2+T1+V91+Vel =T2+Vg2+V32




Kinetic energy revisited :
From relative motion:

Ul'=17 +pl

v: velocity of mass center

pi:velocity w.r.t G

since v} = v;.v; _ E lm-v-z
2 Y1

1 s
T =ngivi.vi =ngi(v + pi)(v + pi)




2
1 1 g _ ..
T = Smv + > M |pl|2+Zmivpl
_ .. _d .
=val~pl=vaZm pi=0
i

Zmi pi =0 : measured form mass center

1_, 1 .
T =37 Zmi+ > M |pi|

T—1 52 + 1 )i |2
—va 2ml-|pl|

1 y . .
%mﬁz: T of the mass center G Z > M |pi|?: energy of particles relative to mass center.




Kinetics of system of particles cont...

Impulse-Momentum
(@) Linear momentum (G)

(71 = mivi =11

(7 = E ma

vt =T+ i

Z mipi = mp=10

L . d> mipi \
G = E mi (U +p) = E miv 4+ —=—— %

dt

_ o d(0) _ _
=7 E mi+ —- =mv=|G =m Uy

dt A
| velocity of center of mass G

total mass
/ time rate of change of G of the system
G

resultant force on mass system

(b) Angular Momentum (Ho) Ho about O:
\(3
g 4 Ho = Z (ri %A vi) = Ho = ZE:‘IJ % ot i) + Zf % omit)
F r =H—Z[ri;< Fi}) =
i

(=vi) = vixvi=10

ap = 1p



Zﬂfﬂ: Ho

> for external forces,) Mo of internal forces cancel out

Ho about G (mass center) — Hec

~HG = "pi x miri
ri=T+pi =>ri=7+pi

HG:Zm x mi (F+pi) | ]

HG — ZP"; % i 5L sz- < mi pi o Z mi pil— 0 [By definition of the mass center G]

——HG:ZpiXmi;ﬁ —
Absolute angular momentum because i is used.

" Relative angular momentum because pi is used.

Since
HG =) pixmipi Ty HG =Y pixmi(F+pi)+ Y pixmiri =>HG=ZP1'><mm=zpi>‘~mmi=zpix'[FHf'f?]'\

sum of

. = : : : : internal moments
= Pl mLT + * mi (p HG = piox Fi= MG n }
Z Parallel=0 Z Z T external moments 1S Zero

= Z MG = HG | Good for rigid & non-rigid systems

40

- . d> mipi
—T X mipi = —Tx —— =) ——»
Z b dt



Ho, about P (arbitrary point)
H, :ZPi'xmir‘i =Z(§+ P)xmr.
Hp =P x> mif +> P xm
H, = 5><Z:mivi +Hy =P xmv+H,
=H, =H,+Pxmv 2Ma = Na
‘H =Y Pxmp

Y Mp=)Mg+Px) F

:ZI\/IP =H,+Pxma




= When a point P whose acceleration is known
is used as a moment center ;

ZMP — (HP)reIative T 5)( maP

:>ZMP — (HP)reI If:-1.a, =0
2.P =0
3. panda; are parallel

42



Conservation of Energy and Momentum

= Conservation of Energy (for a system)

If there is no energy loss due to friction or dissipation ; Then
there’s No net change in Mech. Energy (AE=0)

43



‘ AT+AVg+AVe=0 or

C T1+ Vgl + Vel =T2 +Vg2 + Ve2 ‘ (no work U1 - U2 =0)
Law of conservation of dynamical energy

(b) conservation of Momentum (for a system )

Since ZF=§if ZF:“ ‘5 =0 —



Gl=G2 ‘ principle of conservation of Linear Momentum for a mass system (no linear
Impulse)

since ZM:]:H'{]if ZMEI= 0 ‘ Hﬂ=ﬂ
(H0)1=(H0)2 or (HG)1 =(HG)2 _

Principle of conservation of angular moment for General mass system (no angular Impulse)



1

EX

Rigid equiangular frame of negligible mass ,
resting on a horizontal surface

F is suddenly applied

Find
A- a0




1A%

b) v=r@ HO=HG=3rmv=3rm(r &) =3my2g

. d 2 4 -
ZMG:HE — Fb=— (3mrls ) = 3% b m—

Fb
3Imr




Chapter - 5

- Plane kinematics of rigid bodies




Types of rigid-body plane motion

Rectilinear translation :

: tgst sled




urvilinear translation :




ed-axis rotation :




eneral plane motion :
slation + rotation




« A) Angular motion relations

dg
W=— =

0




e Forconstant a :

W=Ww, +ct

I =W, +2a(6-0,)att=0




otation about a fixed axis




//Example S

A right-angled bar ; if :

e _4 rad/sz ('\
Q) = 2 rad/S p
Find :-
VA ] ? O . < w
3. =7 9 |
aA . \\
\ \ B
ij;.? )’% o ’
| ,/) \-L(///—‘/f/
/ ( 0.5 w
L o
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~——Solution:-

V=—2kx(0.47 +0.3])=0.6 —0.8jm/s

57



= 4k x(0.47 +0.3])=—1.21 +1.6 jm/s’
d,=-2.81+0.4]m/s

V| =/(0.6)2 +(0.8) =1m/s
a = /(2.8) +(0.4) =2.83m/s?

58



- Absolute Motion -

The use of geometric relations which define the
configuration of the body to derive velocities and
acceleration.

Example :-

Equilateral triangular plate ABC is controlled by hydraulic
cylinder D.

Find :-

1. vand a of the center of B

2. wand a of the edge CB

59



——Solution:-

_ @@
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/

-
From the geometry;
X2+y2 _ b2

d
O +y? =b%) =

2XX+2yy =0

= XX+yy=0

—x=—H_"Yy
X X

d

a(x>'<+yy=0)=x5<'+>'<>‘<+yy+yy=x5<'+>'<2+yy+y2=0

X2 —yj—y? :_x2+y2_yy
X X X

= X =

61



But

y=bsiné@

X=pDcosé

V=0

v, :X:_Xy:—bsinﬁvA
X bcosé

= Vg =-V, tand



—(-v,tang)* —0-v; -—vitan®O-v;

bcosd bcosd

~vi(tan®@+1) -—vi(sec’d) —visec’d

= d; =X=
= a; =
with

v, =0.3m/s
and

0=30

bcosd bcosd b



= —0.3tan(30) = —0.3(—=) =—0.173m /s (—)

\/—)

—(0.3)2 sec3(30)

a, — — — —0.693m /s2(—>)

To find angular motion of CB , differentiate &

°
)

y =bsin(@) =y =b(cosf)o" =

0" =w Y YA seco = Esec(:?»O) 1.73rad /s (ccw )
b cos(e) b 0.2

a=w" = 1;)—Asecé?’ tan g = ‘;—Asecetan H[Vb—Asece]

2

a =5 sec? @tan @ =

2
0 22 sec”(30) tan(30) =
0. 32 2 1

022 B

=1.73rad /s?(ccw )




Relative Velocity ( of rigid body )

—_ —_

Vi =Vg +Va 5 OR  V,g =V, =V,

For a rigid body ,VA/B = rw

In vector form Vag = F XW



Power screw

EX: The power screw gives the collar C a velocity
Vc=0.25m/s find w of the arm when 6=30°.

of

66



VB=Vc
Va=Vecos 0 = 0.25 cos 30°=0.217 m/s
V=wre=>w=v/r = 4 =0.217 -0 417 rad/ccw

0.45/cos 30

67



Instantaneous Center of zero velocity
(ICZV)

It is a unique reference point which momentarily has a zero
velocity.

VA=W ra VB=W rB

{5 {5

w= Va/ra Ve= (Va/ra) re

Ve= (ra/ra) Va



EX .. The wheel rolls to the right without slipping.
Locatethe 1 czv? findV, ?

e Solu:

v
V=Wr ->w=—
r

3
w=—=—=10rad/s

0.3

SIS

AC = ,/0.32 + 0.22 — 2(0.3)(0.2)C0S120

— VA
AC = 0.436m /
N A2
>V, =W AC = (10)(0.436) = 4.36m/s

3m

/‘C

No velocity point (1czv)

Vo =3m/s

69



e Relative Acceleration (of a rigid body)

ay =ag +taup =ag +Haxe), Haas)

* (@ye)y =(Vayg)? = TW?

* (ape); =(Vagg)y = 12

In vector form :
— — -
. (aA/B)n= wx (W *71)

* (aA/B)t = ax*r

(an/p)n

IV

(an/p)e

70



EX:

rad 6 rad 3 rad
Wep = ZT'WAB =7 T;WOA =~ 7 5B =?, Aga =?

Solution:
ay = ag + (@a/p)nt+(@a/p):

ay =gy X T+ Woa X (Wpy X1y)

= oy k x 1007 + (=2k) x (-2k x 1007) = =100 ap4 1 — 100 (%)zjmm/s2

~mm

a_B’=aCB><r_B’+WCBx(WCBx@)=0+2f<x(2]€x(—752))=30015—2

B

() = Was x Wao x7a) = =3 (=) x (1751 + 507)) = (&) 1750 - 50 2
n

(@) = @ap X4 = aupk X (~1751+ 50)) = ~50ass — 17545 ] =5
t

B

—100ap, = 429 — 50a,5
—18.37 = —36.7 — 175a,5 —

rad R rad
asg = —0.1050 F(CW DIRECTION (—=k)) & apy = _4_34?



\Al

Motion Relative to Rotating Axes.

. do
w=0k=— . wdt=de6
(di) Is small change ini,

[di=dOj]

M

ao .
= ]2 1=0]=w]

di
dt  dt

—

|
€1

- X1

=wWj

]
—s | E

=3 L )

= W}

and

'a_d}lf-

=|

i—wjandj = —wi
lOr
i 3 x1 and i:Jh:]'




\Al

Relative velocity:

_A}:_B}'l'F:_B}-I_(xL-I_ yr,)
B |
g = g+ E(xiJr yj)
=75 + (d+ ¥) + G+ ¥))
=15 + (x(@WXD)+ (y@FXD)+ @+ 3D

=1+ wX;+ v;)+ v

—

< U, velocity of A relative to the

fy= Ty + WXF+ Vg rotating axes
Vo = Ug + WXT + V,,; —— Transformation of the time derivative of the position
| vector between rotating and non rotating axes

This equation can be generalized for any vector quantity V)

_:,.

<+ Transformation of a time derivative: (dt)x-"" _ ( )xy L WX

(vxlf vyj) + (‘le + V},])

UT'EI




Relative
Acceleration




o |
- - SRS &y — = i

g =dg + WXTr+ W X1+ Upp |
Using previous relations and manipulation: |

'1(17+V_\/)><(V_V)X77)+2V_V>I<ﬁrel + Oy

. a; a, Coriolis ~ Acceleration

acceleration of relative to

rotates axis

General vector expression for the absolute acceleration of a particle A in terms of its
acceleration @,,; measured relative to a2 moving coordinate system which rotates with an
angular velocity w and angular acceleration w




Coriolis Acceleration

It equal 2w X U,.;.
It represent the difference between the acceleration
of A as measured from non-rotating axes and from

rotating axes




If P is a coincident point with A on a rigid body. We can wrtie
the following relation:

[aA=ap+zw xa,,eﬁa,,,el}




Example: Determine the velocity of a pin A (VA) and the velocity of A relative to the

v rotating slot in OD (VA/P slop) .
e——— 450 mm\f»
\
A7
0 =45° 0
225 mm
®=2rad/s
225 mm
.
A
C
/D
x Use X-Y as rotating axis attached to OD:
Solution: VA=VEBE+w=xr+ Vres
' Origin 1s fixed at O (Vz=0)

VA=wxr+ Vres
VA—wx r = w x [(225) cos45(—i) + 225sind5(—j)] = w X o2 (=i — j) = —2u(i — )
4 _é-%txc};:_c%k O | COS 0 L EYYIE 3] N _cn.&- ﬁ ¥ _\/_cﬂ 1
r = 0Pi= /(45 — 225)2 + 2252 i =450v/2 j mm/s
P
=11
. S0V 7 4 0 225 . .
VA=450v2j+di=—"7w(i—j) 2 equs 2 unknowns
/2 ca
225
P=2w —(225/V2)w = 450 V2
ﬁ CiT CiT



Solution:

wea = —4rad/s (ccw);

X = vV, =—450V2mm/s;

vy =1w=(225)(4) =900mm/s;

vp = OP w = (225 \/f)(Z) = 450vV2mm/s;
Va/p = Vpep = 450 V2mm/s;

Check :

Va/p = Vg — VUp

4502 - 900 — 4502

900 2(450v2) =900 v

Should add vectors and not magnitudes.



CHAPTER 16

Plane Kinetics Of Rigid Bodies
= Force, Mass and Acceleration

** General Equations Of Motion
SF=ma

Where :

m : Mass of rigid body

a : Acceleration o [ mass center G



FBD

>F

a —_—

Equivalent force-
couple system

Kinetic Diagram

81



Plane-motion equations:

V‘a

Q

— —

WX Pij

H = ) pi xmp;
|

¢
Pi

Position vector

o= 51 om0

2
: 1= 35w
2
F, ?
= Pi xXxm,
_ | | | 02dm Mass moment

> H.=1w j Pi of inertia

(G = mv) 7

ZMG =H; =Iw = la about z axis

82



AY

Alternative moment equ.

ZWZE;

Ch-6 plane kinetics of Rigid Bodies
Force, Mass and Acceleration
General Egns of Motion




‘ZMpzfa#—mﬁd

In terms of lp (moment of Inertia a bout p):

ZMp = Ip@ + p X map
If Pis a fixed point (,) with =0 -
Z M,=1,0




Ao

For a system of interconnected bodies:

Fixed-Axis Rotation

Q is called ‘center of percussion”,

Because E MQ — [}

As the resultant force pass through it



General plane motion

>f=ma
S MG = la
S Mp = lo+mad

Ex.

Metal hoop is released from rest find a and time to move 3 m,

Assume the hoop rolls without slipping.

solu

a=ra

Sfx = max

mg sin 20— f=ma
N—-mgcos20=0

Fr =mr*2a f= mr*2a/F = mra

f=mgsin 20— mampm(gsi20—-3a) =mra P

a=gsin20-ra=gsin20—-a m a=gsin 20 »

a= (g sin 20)/2 = (9.81/2)(0.342) = 1.678 /s"2

a =3a/r = (1.678 m/s"2)/(150*10A-3 ma) = 11.2 tad/s"2

x=% (ath2) » t=(2x/a)*1/2 = (2(3#)/1.678 m/s"2)71/2 =1.89 s A



Work and Energy./Rigid bodies.

Work —Energy Relations
(a) Work of forces and couples:

U= j ﬁ.df = j F cosa.ds Force in the direction of displacement.
' v\/ (\(}ff«
C ) U=[Mdo
. =
\ = M /
s Couple

(b) Kinetic Energy T — % mV2:;> Translation

Fixed- axis rotation: T — % |0W2

General plane Motion: T — % rT'|\72 + % IIW?\"A i veloit
ngular velocity

Velocity of the Center Moment of inertia about
of mass G Mass center G



AIsoT:%l W2

C
Moment of inertia about C (Instantaneous center of zero velocity).

(c) Potential Energy .
work-energy equation: U 12 = AT + AVg + AV,

Elastic potential energy usually

Work Kinetic Potential energy .
zero for rigid body.

Due to
gravity

(d)_Power:

P=FV =4



ov _ Mae

8 Power = . = 5, = Mw, due to a couple M.

o Total power = F.V + Mw,
o Virtual Work: It is the work calculated

using a virtual displacement and
(assumed), linear or angular.




o Center of percussion (Q): The resultant of all forces
applied to the body must pass through it. The sum
of the moments of all forces about the center of
percussion is always ZERO.

ol = [r?0mK = \/% = Radius of gyaration

ol.=K2Zm¥YM.=1].x




Fixed-axis Rotation

« Whatis| (moment of inertia¢) resistance to rotation — H.=l.w

« Instantaneous center of zero velocity (not acceleration)!




/

[Parallel velocities




End of the course
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