## Dynamics for Mechatronics Engineers,

## Concepts and Examples- Part II

DR. OSAMA M. AL-HABAHBEH
MECHATRONICS ENGINEERING DEPARTMENT
THE UNIVERSITY OF JORDAN

$$
2017
$$

## Impulse And Momentum

The equs of impulse and momentum are obtained by integrating the equ of motion wrt time, whereas, the work-energy equ were obtained by integrating the equ of motion wrt displacement.
Impulse and momentum equs are used to solve problems in which forces act over specified periods of time

Linear Impulse And Linear Momentum

-The basic equation of motion for the particle is :-
$\Sigma \mathrm{F}=\boldsymbol{m} \boldsymbol{V}^{\prime}=d / d t(\boldsymbol{m} V)=G^{\prime} \longrightarrow \quad \Sigma \mathrm{F}=\mathrm{G}^{\prime}$

- $G$ is the linear momentum , $G=m V$

The resultant of all forces acting on a particle equals its time rate of change of linear momentum unit of G is $\mathrm{kg} . \mathrm{m} / \mathrm{s} \equiv \mathrm{N} . \mathrm{s}$
-The resultant force $\Sigma \mathrm{F}$ and $\mathrm{G}^{\prime}$ directions coincide with the direction of acceleration $\Sigma F, G$ and ( $V=a$ ) have the same direction scalar equations of $G$ '
$\Sigma F x=G^{\prime} x \quad \Sigma F y=G^{\prime} y \quad \Sigma F z=G^{\prime} \mathbf{z}$

- To find the effect of $\Sigma F$ over a fiuire period of time, integrate $\Sigma F=G$, wrt time .
$\Sigma F=\mathrm{d} / \mathrm{dt}(\mathrm{G}) \longrightarrow \Sigma \mathrm{Fdt}=\mathrm{dG}$
$\longrightarrow \quad \int \Sigma F d t=\int d G=G 1-G 2=\Delta G$
$\longrightarrow \mathbf{G 2}=\mathbf{G 1}+\int \Sigma \mathbf{F d t}$

$$
\begin{array}{l|l|l}
\mathbf{G} 2=\mathrm{mV} 2 & & \mathbf{G} 1=\mathrm{mV} 1
\end{array}
$$

-Linear Impulse is determined as the product of force and time. The total linear impulse on an $m$ equals the corresponding change in linear momentum of $m$.
$\int \Sigma F x d t=(m V x) 2-(m V x) 1$
$\int \Sigma \mathrm{Fy} \mathrm{dt}=(\mathrm{mVy}) \mathbf{2}-(\mathrm{mVy}) \mathbf{1}$
These Impusle - Momentum equations are independent
$\int \Sigma \mathrm{Fzdt}=(\mathbf{m V z}) 2-(\mathbf{m V z}) 1$
-Impulse $=\int F d t=$ area under the curve


## Consevation of linear Momentum (G)

$-G$ is conserved if $\Sigma F=0$ during the time interval $\longrightarrow G$ remains constant
-G can be constant in some directions and changing in other directions .
-For two interacting particles ( $a$ and $b$ ), with no external forces :-
$\Delta(\mathbf{G a}+\mathbf{G b})=\mathbf{0} \longrightarrow \Delta \mathbf{G}$ tot $=0 \longrightarrow \Delta \mathrm{G} 1=\mathbf{G} 2$

## Example :-

## Find:

a) til when the skip reverse lits dilirection?
b) Velocity of the skilp at $t=8$ sec


## Solution :-

$$
\begin{aligned}
& \text { a) Skip reverse direction when } V=0 \\
& \text { Assume that } \mathrm{V}=0 \text {, at } \mathrm{t}=4+\Delta \mathrm{t} \\
& \text { Use Impulse-Momentum equation } \\
& \int_{0}^{t 1} \sum \boldsymbol{f}_{\mathbf{x}} \mathrm{dt}=\mathrm{m} \Delta \mathbf{v}_{\mathbf{x}} \\
& =2^{*} 0.5^{*} 4^{*} 600+2^{*} 600^{*} \Delta \mathrm{t}-150^{*} 9.81^{*} \cos 60 *(4+\Delta \mathrm{t}) \\
& =150(0-(-4))=>464 \Delta \mathrm{t}=1143=>\Delta \mathrm{t}=2.46 \mathrm{~s} \\
& \mathrm{t} 1=4+2.46=6.46 \mathrm{~s}
\end{aligned}
$$



$$
\begin{aligned}
& \text { b) } \int_{0}^{8} \sum \boldsymbol{f}_{\mathrm{x}} \boldsymbol{d t}=\mathrm{m} \Delta \mathbf{v}_{\mathrm{x}}=>2^{*} 0.5^{*} 4^{*} 600+2^{*}(8-4)^{*} 600-150 * 9.81^{*} \cos 60 * 8 \\
& =150(\mathrm{v}-(-4))=> \\
& 150 \mathrm{v}=714 \Rightarrow \mathrm{~V}=4.76 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{t 1}^{8} \sum f_{\mathrm{x}} d \boldsymbol{d}=\mathrm{m} \Delta \mathbf{v}_{\mathbf{x}}=>\left(2 * 600 *(8-6.46)-150^{*} 9.81^{*} \cos 60 *(8-6.46)\right)=> \\
& 150(\mathrm{v}-0)=150 \mathrm{v} \text { \{same result \}}
\end{aligned}
$$

## Angular Impulse and angular momentum



For particle P:

$\vec{v}=\vec{r}^{\prime}$
$\vec{G}=\mathrm{m} \overrightarrow{\boldsymbol{v}}$
$\uparrow$
Linear Momentum
The angular momentum
$H_{0}$ is defined as the moment of the linear momentum $\mathbf{m} \vec{v}$ about $o$
$\boldsymbol{H}_{\mathbf{0}}$ is a vector perpendicular to plane A , right hand rule is used to determine the sense of $\boldsymbol{H}_{\mathbf{0}}$


## Scaler components of angular momentum :

$$
\begin{aligned}
& \vec{H}_{\mathbf{0}}=\overrightarrow{\mathrm{r}} \mathbf{X} \mathbf{m} \overrightarrow{\mathbf{v}}=\mathbf{m}(x \hat{i}+y \hat{j}+z \hat{k})^{\star}\left(v_{x} x \hat{i}+v_{y} y \hat{y}+v_{z} z \hat{k}\right) \\
& =m\left[x v_{y} \hat{\mathbf{k}}-x v_{z} \hat{\mathbf{j}}-\mathbf{y} v_{x} \hat{\mathbf{k}}+\mathrm{y} \mathbf{v}_{\mathrm{z}} \hat{\mathbf{i}}+\mathrm{z} \mathbf{v}_{\mathrm{x}} \hat{\mathbf{\jmath}}-\mathrm{z} \mathbf{v}_{\mathbf{y}} \hat{\mathbf{i}}\right] \\
& =>\overrightarrow{\mathbf{H}}_{\mathbf{0}}=\mathrm{m}\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\
\boldsymbol{x} & \boldsymbol{y} & z \\
\mathbf{v}_{\mathbf{x}} & \mathbf{v}_{\mathbf{y}} & \mathbf{v}_{\mathbf{z}}
\end{array}\right| \\
& H_{\mathrm{x}}=\boldsymbol{m}\left(\mathrm{v}_{\mathrm{x}} \boldsymbol{y}-\mathrm{v}_{\mathrm{y}} \mathbf{z}\right) \\
& H_{\mathrm{y}}=\boldsymbol{m}\left(\mathrm{v}_{\mathrm{x}} \mathrm{z}-\mathrm{v}_{\mathrm{z}} \boldsymbol{x}\right) \\
& \boldsymbol{H}_{\mathrm{z}}=\boldsymbol{m}\left(\mathrm{v}_{\mathrm{y}} \boldsymbol{x}-\mathrm{v}_{\mathrm{x}} \boldsymbol{y}\right)
\end{aligned}
$$

## Angular Impulse and angular momentum

$$
\begin{aligned}
H_{X} & =m v_{z} y-\mathrm{m} v_{y} z \\
& =\mathrm{m}\left(v_{z} y-v_{y} \mathrm{z}\right)
\end{aligned}
$$

******************
$H_{y}=\mathrm{m} v_{x} z-\mathrm{m}$
$=m\left(v_{x} z-v_{z} x\right)$
$* * * * * * * * * * * * * * * * * *$

$$
\begin{aligned}
& \mathrm{Hz}=\mathrm{m} v_{y} x-\mathrm{m} v_{x} y \\
& =\mathrm{m}\left(v_{y} x-v_{x} y\right)
\end{aligned}
$$


$H_{0}$ : unit is N.m.s

* moment $M_{0}$ and angular momentum $H_{0}$
*     *         *             *                 *                     *                         *                             *                                 *                                     *                                         *                                             *                                                 *                                                     *                                                         *                                                             *                                                                 *                                                                     *                                                                         *                                                                             *                                                                                 *                                                                                     * 



$$
\begin{aligned}
& H_{0}=\vec{r} \times m_{\vec{v}}:: H_{0}^{\prime}=\vec{r}^{\prime} \times m_{\vec{v}}+\underset{r}{ } \times m_{\vec{v}}^{\prime} \\
& =\vec{r} \times m_{\vec{v}}^{\prime}
\end{aligned}
$$



## Acceleration

- The moment of all forces equals the rate of change of angular momentum:

$$
\sum \vec{M}_{o}=\dot{H}_{o}
$$

- Scalar components:

$$
\sum M_{o x}=\dot{H}_{o x} \sum M_{o y}=\dot{H}_{o y} \quad \sum M_{o z}=\dot{H}_{o z}
$$

- For a period of time integrate the equation:

$$
\begin{gathered}
\sum M_{o}=\overrightarrow{\dot{H}}=\frac{d \vec{H}_{o}}{d t} \rightarrow \sum \vec{M}_{o} d t=d \vec{H}_{o} \rightarrow \int_{t_{1}}^{t_{2}} \sum \vec{M}_{o} d t=\int_{H_{o 1}}^{H_{o 2}} d \vec{H}_{o}=\vec{H}_{o_{2}}-\vec{H}_{o_{1}}=\Delta \vec{H}_{o} \\
\vec{H}_{o_{1}}=\vec{r}_{1} \times m \vec{v}_{1} \vec{H}_{o_{2}}=\vec{r}_{2} \times m \vec{v}_{2}
\end{gathered}
$$

- Angular impulse (N.m.s):

The total angular impulse equal the change in angular momentum:

$$
\vec{H}_{o_{2}}=\vec{H}_{o_{1}}+\int_{t_{1}}^{t_{2}} \sum \vec{M}_{o} d t \vec{H}_{o_{2}}-\vec{H}_{o_{1}}=\int_{t_{1}}^{t_{2}} \sum \vec{M}_{o} d t
$$

## Constant Acceleration

- X-component equation:

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}} \sum M_{o x} d t=\left(H_{o x}\right)_{2}-\left(H_{o x}\right)_{1} \\
m\left(v_{z y}-v_{y z}\right)_{2}-m\left(v_{z y}-v_{y z}\right)_{1} \\
\int_{t_{1}}^{t_{2}} \sum M_{o y} d t=\left(H_{o y}\right)_{2}-\left(H_{o y}\right)_{1} \\
\int_{t_{1}}^{t_{2}} \sum M_{o z} d t=\left(H_{o z}\right)_{2}-\left(H_{o z}\right)_{1}
\end{gathered}
$$

For the figure in page (51)
$\int_{t 1}^{t 2} \sum M . d t=\mathrm{H}_{.2}-\mathrm{H}_{.1} \Longrightarrow \int_{t 1}^{t 2} \sum F * r * \sin \Theta d t=\mathrm{mv}_{2} \mathrm{~d}_{2}-\mathrm{mv}_{1} \mathrm{~d}_{1}$

## Conservation of Angular Momentum :

If the resultant moment $\sum \mathrm{M} .=0$ during $\Delta \mathrm{t} \Longrightarrow \sum \overrightarrow{\mathrm{M}} .=\overrightarrow{\mathrm{H}} .=0 \Longrightarrow \overrightarrow{\mathrm{H}} .=$ Constant Angular momentum is conserved.
$\overrightarrow{\mathrm{H}}$. Could be conserved about one axis. But not about another axis.
For two particles $\mathrm{a} \& \mathrm{~b}$, with interactive forces $\overrightarrow{\mathrm{F}}$ and $-\overrightarrow{\mathrm{F}}$ between them ;
Moment of unbalanced forces


The principle of conservation of angular momentum :
$\Delta \overrightarrow{\mathrm{H}}_{\mathrm{a}}=\overrightarrow{\mathrm{H}}_{\mathrm{a} 2}-\overrightarrow{\mathrm{H}}_{\mathrm{al}}=\int_{t 1}^{t 2} \sum \vec{M} a d t$
add the two equations to get
$\Delta \overrightarrow{\mathrm{H}}_{\mathrm{b}}=\overrightarrow{\mathrm{H}}_{\mathrm{b} 2}-\overrightarrow{\mathrm{H}}_{\mathrm{b} 1}=\int_{t 1}^{t 2} \sum \vec{M} b d t$

$$
\begin{aligned}
& \Delta \overrightarrow{\mathrm{Ha}}+\Delta \overrightarrow{\mathrm{H} b}=\int_{t 1}^{t 2} \sum \vec{M} a d t+\int_{t 1}^{t 2} \sum \vec{M} b d t=0 \\
& \quad(\overrightarrow{\mathrm{M}} \mathrm{a}=-\overrightarrow{\mathrm{M}} \mathrm{~b})
\end{aligned}
$$

$$
\Delta \overrightarrow{\mathrm{H}}_{\mathrm{a}}+\Delta \overrightarrow{\mathrm{H}}_{\mathrm{b}}=0
$$

$$
\Delta \overrightarrow{\mathrm{H}}_{\text {total }}=0 \longmapsto \overrightarrow{\mathrm{H}}_{.1}=\overrightarrow{\mathrm{H}}_{\cdot 2}
$$

# Kinetics of Particles 

## Special Applications

Impact
It refers to the collision between two bodies .
a) Direct central impact :

Before Impact


Maximum deformation
During impact


After Impact


Apply the law of conservation of linear momentum :
$\mathrm{m}_{1} \mathrm{~V}_{1}+\mathrm{m}_{2} \mathrm{~V}_{2}=\mathrm{m}_{1} \mathrm{v}^{\prime}{ }_{1}+\mathrm{m}_{2} \mathrm{v}^{\prime} 2$

Define the coefficient of restitution e as :
$\mathrm{e}=\frac{\text { Magnitude of the restoration impulse }}{\text { Magnitude of the deformation impulse }}$

For Particle 1

$$
e^{(1)}=\frac{\int_{t 0}^{t} F r d t}{\int_{0}^{t 0} \underbrace{F d d t}_{\text {Deformation time }}}=\frac{\mathrm{m}_{1}\left[-\mathrm{v}^{\prime}{ }_{1}-\left(-\mathrm{V}_{0}\right)\right]}{\mathrm{m}_{1}\left[-\mathrm{V}_{0}-\left(-\mathrm{V}_{1}\right)\right]}=\frac{\mathrm{V}_{0}-\mathrm{V}^{\prime}{ }_{1}}{\mathrm{~V}_{1}-\mathrm{V} 0}
$$

Deformation period


FOR PARTICLE 2 :

$$
e=\frac{\int_{t_{0}}^{t} F_{r} \cdot d t}{\int_{0}^{t_{0}} F_{d} \cdot d t}=\frac{\left(m_{2}\right)\left(V_{2}^{\prime}-V_{0}\right)}{\left(m_{2}\right)\left(V_{0}-V_{2}\right)}=\frac{\left(V_{2}^{\prime}-V_{0}\right)}{\left(V_{0}-V_{2}\right)}
$$

- The change of momentum (and hence $\Delta V$ ) should be in the same direction as the impulse (and hence the force)

$$
\begin{aligned}
& e^{i}=e^{(2)}=\frac{\left(V_{0}-V_{1}^{\prime}\right)}{\left(V_{1}-V_{0}\right)}=\frac{\left(V^{\prime}{ }_{2}-V_{0}\right)}{\left(V_{0}-V_{2}\right)} \Longrightarrow \frac{V_{0}-V_{1}^{\prime}+V^{\prime}{ }_{2}-V_{0}}{V_{1}-V_{0}+V_{0}-V_{2}}=\frac{V^{\prime}{ }_{2}-V_{1}^{\prime}}{V_{1}-V_{2}} \\
& e=\frac{\text { relative velocity of separation }}{\text { relative velocity of approach }}=\frac{V^{\prime}{ }_{2}-V_{1}^{\prime}}{V_{1}-V_{2}} \longleftarrow
\end{aligned}
$$



```
If e=0\Longrightarrow inelastic(plastic) impact }\longrightarrow\mathrm{ max energy loss (particles cling together after impact)
```

Coefficient of restitution :


## (b) Oblique central Impact :

the initial and final velocities are not parallel


$$
\begin{array}{ll}
\left(\nu_{1}\right)_{n}=-\nu_{1} \sin \theta_{1} & \left(\nu_{1}\right)_{n}=\nu_{1} \cos \theta_{1} \\
\left(\nu_{2}\right)_{n}=\nu_{2} \sin \theta_{2} & \left(\nu_{2}\right)_{t}=\nu_{2} \cos \theta_{2}
\end{array}
$$

## Given :

$$
m_{1}, m_{2},\left(v_{1}\right)_{n},\left(v_{1}\right)_{t},\left(v_{2}\right)_{n},\left(v_{2}\right)_{t}
$$

## Unknowns:

$\left(v 1^{\prime}\right)_{n} \cdot\left(v 1^{\prime}\right)_{t},\left(v 2^{\prime}\right)_{n} \cdot\left(v 2^{\prime}\right)_{t}$

## Equs:

Conservation of momentum in the n -direction
$m_{1}\left(v_{1}\right)_{n}+m_{2}\left(v_{2}\right)_{n}=m_{1}\left(v_{1}^{\prime}\right)_{n}+m_{2}\left(v_{2}\right)_{n}$

## Conservation of momentum in the ( t ) direction

$$
\begin{aligned}
& M_{1}\left(v_{1}\right)=M_{1}\left(v_{1}^{\prime}{ }_{1}\right) \\
& M_{2}\left(v_{2}\right)=M_{2}\left(v^{\prime}{ }_{2}\right)
\end{aligned}
$$

## Coefficient of restitution (e)

$$
\mathrm{e}=\frac{\left(v_{2}\right)-\left(v_{1}\right)}{\left(v_{2}\right)-\left(v_{1}\right)}
$$

* Note : Finally ( $\left.\theta^{\prime}{ }_{1} \& \theta^{\prime}{ }_{2}\right)$ are found using the velocity components.


## Relative motion

* It's the consideration of a moving reference system*

Equations of relative motion:

$$
\begin{aligned}
& \overrightarrow{a_{B}}=\overrightarrow{a_{A}}+\overrightarrow{a_{B / A}} \\
& \overrightarrow{\sum F}=\mathrm{m}^{*} \overrightarrow{a_{B}} \\
& \overrightarrow{\sum F}=\mathrm{m}^{*}\left(\overrightarrow{a_{A}}+\overrightarrow{a_{B / A}}\right)
\end{aligned}
$$



## Problem 3/74

The cars of an amusements park have a speed ( $v_{\mathrm{A}}=22 \mathrm{~m} / \mathrm{s}$ ) at A , and a speed ( $v_{\mathrm{B}}=12 \mathrm{~m} / \mathrm{s}$ ) at B. If a ( $75-\mathrm{kg}$ ) rider sits on a spring scale (which registers the normal force exerted on it). Determine the scale readings as the car passes points A and $B$, assume that the person's arms and legs do not support appreciable forces.


## Solution :



Note: static normal force equals the weight (75).(9.81) and it equals 736(N)

## Problem 3/129 :

The ball is released from position $\boldsymbol{A}$ with a velocity of ( $\mathbf{3 \mathrm { m } / \mathrm { s } \text { ) and swings in a vertical plane at the bottom }}$ position, the cord strikes the fixed bar at $\boldsymbol{B}$, and the ball continues to swing in the dashed arc . Calculate the velocity Vc of the ball as it passes position $\boldsymbol{C}$.


Problem 3/129

## Solution :

```
U1-2 = \DeltaT ;
mg (0.8-1.2 cos (60')) = 0.5 m (V\mp@subsup{c}{}{2}-\mp@subsup{3}{}{2});
9.81(0.2) = 0.5 (Vc
Vc}\mp@subsup{}{}{2}=12.92
Vc = 3.59 m/s.
```


## Problem 3／123：

A $(\underline{40-K g})$ boy starts from rest at the bottom $A$ of a $\underline{10-\text { percent }}$ incline and increases his speed at a constant rate to 8 $\mathbf{k m} / \mathrm{h}$ as he passes $\boldsymbol{B}, 15 \mathrm{~m}$ along the incline from $\boldsymbol{A}$ ．
Determine his power output as he approaches B．

## Solution ：

```
VB=8/3.6 = 2.22 m/s
VB}\mp@subsup{}{}{2}=V\mp@subsup{A}{}{2}+2a|
    = 0 +2a }\Delta
a=2.22 %/2(15) = 0.1646 m/s}\mp@subsup{\textrm{s}}{}{2
0 = 利年(0.1) = 5.71
凸}\sumF=m
F-40(9.81) sin (5.71') = 40 (0.1646)
F = 45.6 N
P = FV = 45.6 (2.22)
P = 101.4 W
```



## Problem 3/150 :

The springs are undeformed in the position shown. If the $\mathbf{6 K g}$ collar is released from rest in the position where the lowest spring is compressed $\mathbf{1 2 5 ~ m m}$.
Determine the maximum compression $Х \boldsymbol{\varnothing}$ of the upper spring .

## Solution:


$\Sigma$ stablish datum at release point
$T_{A}+V_{A}=T_{B}+V_{B} ;$
$0+0.5\left(\right.$ KA. $\left.^{2} \mathrm{XA}^{2}\right)=0+0.5\left(\mathrm{~KB}^{2} . \mathrm{XB}^{2}\right)+\mathrm{mg}\left(\mathrm{XA}^{2}+\mathrm{d}+\mathrm{XB}_{\mathrm{B}}\right) ;$
$0.5(8500)(0.125)^{2}=0.5(1750)$ Хв $^{2}+6(9.81)(0.125+0.5-0.15+Х в)$
$X в=0.1766 \mathrm{~m}=176.6 \mathrm{~mm}$
(The collar moves a distance of $0.5-0.15=0.35 \mathrm{~m}$ )

## Problem 3/216:

The $\mathbf{3 K g}$ sphere moves in the $\mathbf{x}$ - $\mathbf{y}$ plane and has the indicated velocity at a particular instant . Determine its:- (a) linear moment .
(b) angular momentum about point $\boldsymbol{O}$.
(c) kinetic energy .

## Solution :



Problem 3/216
(a) $\vec{G}=m \vec{v}$

$$
=3.4\left(\cos \left(45^{\circ}\right) i+\sin \left(45^{\circ}\right) j\right)
$$

= 8.49i-8.49j Kg.

```
(b) \(\vec{H}_{o}=\vec{r} * \vec{m}=\vec{r} * \vec{G}\)
    \(=2\left(\cos \left(60^{\circ}\right) i+\sin \left(60^{\circ}\right) j\right) \times(8.49 i-8.49 j)\)
    \(=2[-4.25 \mathrm{k}-7.35 \mathrm{k}]\)
    \(=-23.2 \mathrm{Kg} \cdot \mathrm{m}^{2} / \mathrm{s}\)
```

(c) $\mathrm{T}=0.5 \mathrm{~m} \mathrm{v}^{2}=0.5(3)\left(4^{2}\right)$
$=24 \mathrm{~J}$

## *Problem 3/250 *

The steel ball strikes the heavy steel plate with a velocity $\mathrm{v} .=24 \mathrm{~m} / \mathrm{s}$ at angle of $60^{*}$ with the horizontal. If the coefficient of restitution is $\mathrm{e}=0.8$. Compute the velocity v and its direction 0 with which the ball rebounds from the plate .

*Solution*
*during impact $\sum f x=0$ so no change in X velocity.
*component.
$V(\cos 0)=24(\cos 60)=24(0.5)=12 \mathrm{~m} / \mathrm{s}$
In y - diriction

$$
\begin{aligned}
E & =\frac{V 2^{\prime}-V 1^{\prime}}{V 2-V 1}=\frac{0-v * \sin \Theta}{-v * \cos 30-0}=0.8=\frac{v * \sin \Theta}{v * \cos 30} \\
0.8 & =\frac{v * \sin \Theta}{24 * \cos 30} \ggg v * \sin \Theta=16.63 \ggg v * \cos \Theta=12 \\
\frac{v * \sin \Theta}{v * \cos \Theta} & =\frac{16.63}{12}=\tan \Theta=1.39 \ggg \Theta=54.2 \\
V & =\frac{12}{\cos \Theta}=\frac{12}{\cos 54.2}=20.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

## \#chapter 4

## (Kinetics of systems of particles)

*the principles applied to a single particle will be extended to a system of participles.
*A rigid body is defined as a solid system of particles, where in the distance between participles remain unchanged .
-example of rigid-body problems:
Machines , land \& aircraft , rockets, and space-craft.
*A non-rigid body could be a solid body which changes shape with time due to deformation. It could also be a liquid or gas.
**Generalized Newton's 2nd law

F3 external forces : resulting from external bodies, gravitational, electric, or

f3 internal forces (reactions)

M is center of mass of the participles


## Applying Newton's 2 $^{\text {nd }}$ law to the system :

$$
\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3+\ldots . . . . . . . . .+\mathrm{f} 1+\mathrm{f} 2+\mathrm{f} 3+\ldots . . . .=\sum m_{i} \cdot \ddot{r}_{i} \longleftarrow \text { Acceleration of mi }
$$

For all particles:

$$
\sum F+\sum_{\text {External }} f=\sum m_{i} \cdot \ddot{r}_{i}
$$

Since



Generalized Newton's $2^{\text {nd }}$ law of motion for a mass system. Or equation of motion of $m$. Or principle of motion of the mass center

## Component form:

$$
\sum F_{x}=m \bar{a}_{x}
$$

$$
\sum F_{y}=m \bar{a}_{y}
$$

$$
\sum F_{z}=m \bar{a}_{z}
$$

$\sum F$ : Generally does not pass through G.

## Work-Energy :

$$
m_{i}:\left(U_{1-2}\right)_{i}=\Delta T_{i} \longmapsto 1 / 2 m_{i} v_{i}^{2}
$$

For the entire system : $\sum_{i=1}^{n}\left(U_{1-2}\right)_{i}=\sum_{i=1}^{n} \Delta T_{i}$

Work done by internal forces is zero because it cancels out . If gravity and elastic energy is included [non-rigid body]:
$U_{1-2}^{\prime}=\Delta T+\Delta V_{g}+\Delta V_{e}$
$U_{1-2}$ : work done on a non-rigid system.
$\Delta T$ :kinetic energy .
$\Delta V_{g}$ : gravitational potential energy
$\Delta V_{e}$ : elastic potential energy .

$$
\underbrace{\Delta T+\Delta V_{g}+\Delta V_{e}}_{\Delta \mathrm{E}}
$$

$\Delta \mathrm{E}$ :chang in mechanical energy .

$$
\begin{aligned}
& \mathrm{OR} \\
& U_{1-2}^{\prime}+T_{1}+V_{g_{1}}+V_{e_{1}}=T_{2}+V_{g 2}+V_{e 2}
\end{aligned}
$$

## Kinetic energy revisited :

From relative motion:

$$
v_{i}=\bar{v}+\dot{p} i
$$

$\bar{v}$ : velocity of mass center
$p i$ : velocity w.r.t G
since $v_{i}^{2}=v_{i} \cdot v_{i} \quad T=\sum \frac{1}{2} m_{i} v_{i}^{2}$

$$
T=\sum \frac{1}{2} m_{i} v_{i} \cdot v_{i}=\sum \frac{1}{2} m_{i}(\bar{v}+\dot{p} i)(\bar{v}+\dot{p} i)
$$

$$
\begin{aligned}
T & =\sum \frac{1}{2} m_{i} \bar{v}+\sum \frac{1}{2} m_{i}|\dot{p} i|^{2}+\sum m_{i} \bar{v} \dot{p} i \\
& =\bar{v} \sum m_{i} \dot{p} i=\bar{v} \frac{d}{d t} \sum m p i=0
\end{aligned}
$$

$\sum m_{i} p i=0 \quad:$ measured form mass center

$$
\begin{aligned}
T & =\frac{1}{2} \bar{v}^{2} \sum m_{i}+\sum \frac{1}{2} m_{i}|\dot{p} i|^{2} \\
T & =\frac{1}{2} m \bar{v}^{2}+\sum \frac{1}{2} m_{i}|\dot{p} i|^{2}
\end{aligned}
$$

$\frac{1}{2} m \bar{v}^{2}: T$ of the mass center G
$\sum \frac{1}{2} m_{i}|\dot{p} i|^{2}$ : energy of particles relative to mass center.

Kinetics of system of particles cont.
Impulse-Momentum
(a) Linear momentum (G)

$$
\begin{aligned}
& G i=m i v i \leftarrow=\dot{r} i \\
& G=\sum m i v i \\
& v i=\bar{v}+\dot{p} i \\
& \sum m i p i=m \bar{p}=0 \\
& G=\sum m i(\bar{v}+\dot{p} i)=\sum m i \bar{v}+\frac{\mathrm{d} \sum \mathrm{mi} p \mathrm{a}}{\mathrm{~d} t} \\
& =\bar{v} \sum m i+\frac{\mathrm{d}(0)}{\mathrm{d} t}=m \bar{v} \Rightarrow G=m \bar{v}
\end{aligned}
$$



$$
\dot{G}=m \bar{v}=m \bar{a}=\sum F \Rightarrow \sum F_{\underset{G}{ }=\dot{G}} \quad \text { resultant force on mass system }
$$

(b) Angular Momentum (Ho)


Ho about O:

$$
\begin{aligned}
H o=\sum(r i \times m i v i) \Rightarrow \dot{H} o & =\sum(r i \times m i v i)+\sum(r i \times m i v i) \\
& =0+\sum(r i \times F i) \Rightarrow \\
(=v i) \Rightarrow v i \times v i & =0
\end{aligned}
$$

## $\sum M o=H o$

Ho about $G$ (mass center) $\rightarrow \mathrm{H}_{\mathrm{G}}$


Absolute angular momentum because $\dot{r i}$ is used.
Relative angular momentum because $\dot{p}$ is used.
Since

$$
H G=\sum p i \times m i \dot{p} \dot{i} \Rightarrow \dot{H} G=\sum \dot{p} i \times m i(\dot{\bar{r}}+\dot{p} \dot{p})+\sum p i \times m i \ddot{r i} \mid \Rightarrow H G=\sum p i \times m i \dot{r i}=\sum p i \times m i a i=\sum p i \times(F i+\underset{\text { sum of }}{f i)}
$$

$$
=\sum \dot{p} i \times m i \dot{\bar{r}}+\sum(p i \times m i(p i \quad \quad \text { Parallel }=0
$$

$$
-\dot{\bar{r}} \times \sum m i \dot{p} i=-\dot{\bar{r}} \times \frac{\mathrm{d} \sum \mathrm{mipi}}{\mathrm{~d} t}=0
$$

$\Rightarrow \sum M G=\dot{H} G \quad$ Good for rigid \& non-rigid systems

Il $H_{0}$ about $P$ (arbitrary point)

$$
\begin{aligned}
& H_{P}=\sum P_{i}^{\prime} \times m_{i} \dot{r}_{i}=\sum\left(\bar{P}+P_{i}\right) \times m_{i} \dot{r}_{i} \\
& H_{P}=\bar{P} \times \sum m_{i} \dot{r}_{i}+\sum P_{i} \times m_{i} \dot{r}_{i} \\
& H_{p}=\bar{P} \times \sum m_{i} v_{i}+H_{G}=\bar{P} \times m \bar{v}+H_{G} \\
& \Rightarrow H_{p}=H_{G}+\bar{P} \times m \bar{v} \\
& \bullet H_{G}=\sum P_{i} \times m_{i} \dot{r}_{i} \\
& \sum M_{P}=\sum M_{G}+\bar{P} \times \sum F \\
& \Rightarrow \sum M_{P}=\dot{H}_{G}+\bar{P} \times m \bar{a}
\end{aligned}
$$

- When a point $P$ whose acceleration is known is used as a moment center;

$$
\begin{aligned}
& \sum M_{P}=\left(\dot{H}_{P}\right)_{\text {relative }}+\bar{P} \times m a_{P} \\
& \Rightarrow \sum M_{P}=\left(\dot{H}_{P}\right)_{\text {rel }} \text { If :- 1. } a_{P}=0 \\
& \text { 2. } \bar{P}=0 \\
& \text { 3. } \bar{P} \text { and } a_{P} \text { are parallel }
\end{aligned}
$$

III Conservation of Energy and Momentum

- Conservation of Energy (for a system)

If there is no energy loss due to friction or dissipation ; Then there's No net change in Mech. Energy ( $\Delta \mathrm{E}=0$ )
$\mathrm{T} 1+\mathrm{Vg} 1+\mathrm{Ve} 1=\mathrm{T} 2+\mathrm{Vg} 2+\mathrm{Ve} 2 \longrightarrow$ (no work U1-U2 = 0)
Law of conservation of dynamical energy
(b) conservation of Momentum (for a system )

Since $\quad \sum F=\dot{G}$ if $\quad \sum F=0 \quad G=0$

```
\[
\mathrm{G} 1=\mathrm{G} 2
\]
principle of conservation of Linear Momentum for a mass system (no linear Impulse)
```

since $\quad \sum M 0=H_{0}$ if $\quad \sum M 0=0 \quad \dot{H} 0=0$
$(\mathrm{H} 0) 1=(\mathrm{H} 0) 2$ or $(\mathrm{HG}) 1=(\mathrm{HG}) 2$


Principle of conservation of angular moment for General mass system (no angular Impulse)

## $\underline{E X}$

Rigid equiangular frame of negligible mass, resting on a horizontal surface
$F$ is suddenly applied


Find
A- a0

B- 日
a) $\sum F=m \bar{a} \longrightarrow \mathrm{~F}=3 \mathrm{~m} \bar{a} \longrightarrow \bar{a}=\mathrm{a} 0=\frac{F}{3 m} \hat{l}$
b) $v=r \dot{\theta} \quad \mathrm{H} 0=\mathrm{HG}=3 \mathrm{rmv}=3 \mathrm{rm}(\mathrm{r} \dot{\theta})=3 \mathrm{~m} r^{2} \dot{\theta}$
$\sum M G=H G \longrightarrow F b=\frac{\mathrm{d}}{\mathrm{dt}}\left(3 \mathrm{mr}^{2} \dot{\theta}\right)=3 \mathrm{mr}^{2} \ddot{\theta} \longrightarrow \ddot{\theta} \longrightarrow \frac{F b}{3 m \dot{r}}$
$\qquad$
$\qquad$
$\qquad$
1

217

I
$\qquad$
1




 =

 +


 T

$\qquad$

## Types of rigid-body plane motion

- a) Rectilinear translation :

- Example : Rocket test sled
- b) Curvilinear translation :

- Example : Parallel-link swinging plate

- c) Fixed-axis rotation :

- Example : Compound pendulum

- d) General plane motion :
- translation + rotation

- Example : Connecting rod in a reciprocating engine



## Rotation

- A) Angular motion relations

$$
\begin{aligned}
& w=\frac{d \theta}{d t}=\dot{\theta} \\
& \alpha=\frac{d w}{d t}=\dot{w} \\
& \alpha=\frac{d}{d t}\left(\frac{d \theta}{d t}\right)=\frac{d^{2} \theta}{d t^{2}}=\ddot{\theta} \\
& w=\frac{d \theta}{d t} \Rightarrow d t=\frac{d \theta}{w} \\
& \alpha=\frac{d w}{d t} \Rightarrow d t=\frac{d w}{\alpha} \Rightarrow \frac{d \theta}{w}=\frac{d w}{\alpha} \\
& w d w=\alpha d \theta \Rightarrow \dot{\theta} d \dot{\theta}=\ddot{\theta} d \theta
\end{aligned}
$$

$\qquad$

$$
\text { - For constant } \alpha
$$

$$
\frac{1}{4}
$$

$$
2
$$

$$
w^{2}=w_{o}^{2}+2 \alpha\left(\theta-\theta_{o}\right) \mathrm{at} t=0
$$

$$
1
$$

$$
\frac{1}{4 x}
$$

e

\begin{abstract}


#### Abstract

$$
11
$$


\end{abstract} 58 5 (xix) $+2$

 Cons els) $\square$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$




$$
\begin{aligned}
& w=w_{o}+\alpha t \\
& w^{2}=w_{o}^{2}+2 \alpha\left(\theta-\theta_{o}\right) \mathrm{at} \mathrm{t}=0 \\
& \theta=\theta_{o}+w_{o} t+\frac{1}{2} \alpha t^{2}
\end{aligned}
$$

$$
E
$$

$$
\underline{\underline{0}}
$$

$$
1
$$

$$
=
$$




$$
=
$$

$$
=
$$

$\qquad$
$\qquad$




$$
m
$$

$$
2 x
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ 3 , 5 ) ) $($
$\qquad$
$\qquad$
$\qquad$
 (1) 4 2 $\square$

$\qquad$

- B) Rotation about a fixed axis

$$
\begin{aligned}
& v=r w \\
& a_{n} \frac{v^{2}}{r}=\frac{r^{2} w^{2}}{r}=r w^{2}=v w \\
& a_{t}=r \alpha
\end{aligned}
$$

- In vector form :

$$
\begin{aligned}
& \vec{v}=\vec{w} \times \vec{r} \\
& \vec{a}_{n}=\vec{w} \times(\vec{w} \times \vec{r}) \\
& \vec{a}_{t}=\vec{\alpha} \times \vec{r}
\end{aligned}
$$

## Example :-

- A right-angled bar ; if :

$$
\begin{aligned}
& \alpha=-4 \mathrm{rad} / \mathrm{s}^{2} \\
& \omega=2 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

- Find :-

$$
\begin{aligned}
& v_{A}=? \\
& \vec{a}_{A}=?
\end{aligned}
$$



## Solution :-

- $\vec{\omega}=-2 \hat{k} \mathrm{rad} / \mathrm{s}$
- $\vec{\alpha}=-4 \mathrm{rad} / \mathrm{s}^{2}(-\hat{k})$
$\vec{\alpha}=4 \hat{k} \mathrm{rad} / \mathrm{s}^{2}$
- $\vec{v}=\vec{\omega} \times \vec{r}$
$\vec{v}=-2 \hat{k} \times(0.4 \hat{i}+0.3 \hat{j})=0.6 \hat{i}-0.8 \hat{j} \mathrm{~m} / \mathrm{s}$
- $\vec{a}_{A}=\vec{a}_{n}+\vec{a}_{t}$
- $\vec{a}_{n}=\vec{\omega} \times(\vec{\omega} \times \vec{r})$
$\vec{a}_{n}=-\hat{k} \times(0.6 \hat{i}-0.8 \hat{j})=-1.2 \hat{i}+1.6 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
- $\vec{a}_{t}=\vec{\alpha} \times \vec{r}$
$\vec{a}_{t}=4 \hat{k} \times(0.4 \hat{i}+0.3 \hat{j})=-1.2 \hat{i}+1.6 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
$\Rightarrow \vec{a}_{A}=-2.8 \hat{i}+0.4 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
$\Rightarrow|v|=\sqrt{(0.6)^{2}+(0.8)^{2}}=1 \mathrm{~m} / \mathrm{s}$
$\Rightarrow|a|=\sqrt{(2.8)^{2}+(0.4)^{2}}=2.83 \mathrm{~m} / \mathrm{s}^{2}$


## Absolute Motion

The use of geometric relations which define the configuration of the body to derive velocities and acceleration.

## Example :-

Equilateral triangular plate ABC is controlled by hydraulic cylinder D.
Find :-

1. vand a of the center of B
2. $\omega$ and $\alpha$ of the edge CB

## Solution:-



## From the geometry;

$$
\begin{aligned}
& x^{2}+y^{2}=b^{2} \\
& \frac{d}{d t}\left(x^{2}+y^{2}=b^{2}\right)= \\
& 2 \dot{x} x+2 y \dot{y}=0 \\
& \Rightarrow \dot{x} x+y \dot{y}=0 \\
& \Rightarrow \dot{x}=\frac{-y \dot{y}}{x}=\frac{-y}{x} \dot{y} \\
& \frac{d}{d t}(x \dot{x}+y \dot{y}=0)=x \ddot{x}+\dot{x} \dot{x}+y \ddot{y}+\dot{y} \dot{y}=x \ddot{x}+\dot{x}^{2}+y \ddot{y}+\dot{y}^{2}=0 \\
& \Rightarrow \ddot{x}=\frac{-\dot{x}^{2}-y \ddot{y}-\dot{y}^{2}}{x}=-\frac{\dot{x}^{2}+\dot{y}^{2}}{x}-\frac{y}{x} \ddot{y}
\end{aligned}
$$

But

$$
\begin{aligned}
& y=b \sin \theta \\
& x=b \cos \theta \\
& \ddot{y}=0
\end{aligned}
$$

$$
\Rightarrow v_{B}=\dot{x}=-\frac{y}{x} \dot{y}=\frac{-b \sin \theta}{b \cos \theta} v_{A}
$$

$$
\Rightarrow v_{B}=-v_{A} \tan \theta
$$

$$
\begin{aligned}
& \Rightarrow a_{B}=\ddot{x}=\frac{-\left(-v_{A} \tan \theta\right)^{2}-0-v_{A}^{2}}{b \cos \theta}=\frac{-v_{A}^{2} \tan ^{2} \theta-v_{A}^{2}}{b \cos \theta} \\
& \Rightarrow a_{B}=\frac{-v_{A}^{2}\left(\tan ^{2} \theta+1\right)}{b \cos \theta}=\frac{-v_{A}^{2}\left(\sec ^{2} \theta\right)}{b \cos \theta}=\frac{-v_{A}^{2} \sec ^{3} \theta}{b}
\end{aligned}
$$

with
$v_{A}=0.3 \mathrm{~m} / \mathrm{s}$
and
$\theta=30^{\circ}$

$$
\begin{gathered}
v_{A}=-0.3 \tan (30)=-0.3\left(\frac{1}{\sqrt{3}}\right)=-0.173 m / s(\rightarrow) \\
a_{B}=\frac{-(0.3)^{2} \sec ^{3}(30)}{0.2}=-0.693 m / s^{2}(\rightarrow)
\end{gathered}
$$

To find angular motion of $C B$, differentiate $\theta$

$$
\begin{aligned}
& y=b \sin (\theta) \Rightarrow y^{\bullet}=b(\cos \theta) \theta^{\bullet} \Rightarrow \\
& \theta^{\bullet}=w=\frac{y^{\bullet}}{b \cos (\theta)}=\frac{v_{A}}{b} \sec \theta=\frac{0.3}{0.2} \sec (30)=1.73 \mathrm{rad} / \mathrm{s}(c \mathrm{cw})
\end{aligned}
$$

$$
\alpha=w^{\bullet}=\frac{\nu_{A}}{b} \sec \theta^{\bullet} \tan \theta=\frac{\nu_{A}}{b} \sec \theta \tan \theta\left[\frac{\nu_{A}}{b} \sec \theta\right]
$$

$$
\alpha=\frac{v_{A}^{2}}{b^{2}} \sec ^{2} \theta \tan \theta=\frac{0.3^{2}}{0.2^{2}} \sec ^{2}(30) \tan (30)=
$$

$$
\frac{0.3^{2}}{0.2^{2}}\left(\frac{2}{\sqrt{3}}\right) \frac{1}{\sqrt{3}}=1.73 \mathrm{rad} / \mathrm{s}^{2}(c \mathrm{cw})
$$

## Relative Velocity ( of rigid body )

$$
\vec{v}_{A}=\vec{v}_{B}+\vec{v}_{A / B} \quad \text { OR } \quad \vec{v}_{A / B}=\vec{v}_{A}-\vec{v}_{B}
$$

For a rigid body,$\vec{v}_{A / B}=r w$

In vector form $\quad \overrightarrow{\boldsymbol{v}}_{A / B}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{w}}$


## Power screw

EX: The power screw gives the collar C a velocity of $\mathrm{V}_{\mathrm{c}}=0.25 \mathrm{~m} / \mathrm{s}$ find w of the arm when $\theta=30^{\circ}$.


$$
\begin{aligned}
& V_{B}=V_{C} \\
& V_{A}=V_{B} \cos \theta=0.25 \cos 30^{\circ}=0.217 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~V}=\mathrm{wr} \Longrightarrow \mathrm{w}=\mathrm{V} / \mathrm{r}=\frac{V_{A}=0.217}{0.45 / \cos 30}=0.417 \mathrm{rad} / \mathrm{ccw}
\end{aligned}
$$



## Instantaneous Center of zero velocity (ICZV)

It is a unique reference point which momentarily has a zero velocity.

$$
\begin{array}{lll}
V_{A}=w r_{A} & & V_{B}=w r_{B} \\
& \text { § }=V_{A} / r_{A} \\
& & V_{B}=\left(V_{A} / r_{A}\right) r_{B} \\
& \\
& V_{B}=\left(r_{B} / r_{A}\right) V_{A}
\end{array}
$$

## EX .. The wheel rolls to the right without slipping.

 Locate the 1 czv ? find $\mathrm{V}_{\mathrm{A}}$ ?- Solu:

$$
\begin{gathered}
v=w r \rightarrow w=\frac{v}{r} \\
w=\frac{v_{o}}{\overrightarrow{O C}}=\frac{3}{0.3}=10 \mathrm{rad} / \mathrm{s} \\
\overrightarrow{A C}=\sqrt{0.3^{2}+0.2^{2}-2(0.3)(0.2) \operatorname{COS} 120} \\
\overrightarrow{A C}=0.436 \mathrm{~m} \\
\rightarrow V_{A}=W \overrightarrow{A C}=(10)(0.436)=4.36 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$



## - Relative Acceleration (of a rigid body)

$a_{A}=a_{B}+a_{A / B}=a_{B}+\left(a_{A / B}\right)_{n}+\left(a_{A / B}\right)_{t}$

- $\left(\mathrm{a}_{\mathrm{A} / \mathrm{B}}\right)_{\mathrm{n}}=\left(\mathrm{V}_{\mathrm{A} / \mathrm{B}}\right)^{2}=r w^{2}$
- $\left(\mathrm{a}_{\mathrm{A} / \mathrm{B}}\right)_{\mathrm{t}}=\left(\mathrm{V}_{\mathrm{A} / \mathrm{B}}\right)_{\mathrm{t}}=r \alpha$

In vector form :

- $\left(\mathrm{a}_{\mathrm{A} / \mathrm{B}}\right)_{\mathrm{n}}=\vec{w} *(\vec{w} * \vec{r})$
- $\left(\mathrm{a}_{\mathrm{A} / \mathrm{B}}\right)_{\mathrm{t}}=\vec{\alpha} * \vec{r}$


EX:
$W_{C B}=2 \frac{\mathrm{rad}}{\mathrm{s}}, W_{A B}=-\frac{6}{7} \frac{\mathrm{rad}}{\mathrm{s}}, W_{O A}=-\frac{3}{7} \frac{\mathrm{rad}}{\mathrm{s}}, \alpha_{A B}=?, \alpha_{O A}=?$

Solution:

$$
\begin{gathered}
\overrightarrow{\alpha_{A}}=\overrightarrow{\alpha_{B}}+\left(\overrightarrow{\alpha_{A / B}}\right)_{n}+\left(\overrightarrow{\alpha_{A / B}}\right)_{t} \\
\overrightarrow{\alpha_{A}}=\alpha_{O A} \times r_{A}+W_{O A} \times\left(W_{O A} \times r_{A}\right)
\end{gathered}
$$


$=\alpha_{O A} \hat{k} \times 100 \hat{\jmath}+\left(-\frac{3}{7} \hat{k}\right) \times\left(-\frac{3}{9} \hat{k} \times 100 \hat{\jmath}\right)=-100 \alpha_{O A} \hat{\imath}-100\left(\frac{3}{7}\right)^{2} \hat{\jmath} \mathrm{~mm} / \mathrm{s}^{2}$
$\overrightarrow{\alpha_{B}}=\alpha_{C B} \times \overrightarrow{r_{B}}+\overrightarrow{W_{C B}} \times\left(\overrightarrow{W_{C B}} \times \overrightarrow{r_{B}}\right)=0+2 \hat{k} \times(2 \hat{k} \times(-75 \hat{\imath}))=300 \hat{\imath} \frac{\mathrm{~mm}}{\mathrm{~s}^{2}}$
$\left(\overrightarrow{\alpha_{\bar{B}}}\right)_{n}=W_{A B} \times\left(W_{A B} \times r_{\bar{B}}\right)=-\frac{6}{7} \hat{k} \times\left(\left(-\frac{6}{7} \hat{k}\right) \times(-175 \hat{\imath}+50 \hat{\jmath})\right)=\left(\frac{6}{7}\right)^{2}(175 \hat{\imath}-50 \hat{\jmath}) \frac{m m}{s^{2}}$
$\left(\overrightarrow{\alpha_{\bar{A}}}\right)_{t}=\alpha_{A B} \times r_{\bar{B}}=\alpha_{A B} \hat{k} \times(-175 \hat{\imath}+50 \hat{\jmath})=-50 \alpha_{A B} \hat{\imath}-175 \alpha_{A B} \hat{\jmath} \frac{m m}{s^{2}}$

$$
\begin{gathered}
-100 \alpha_{O A}=429-50 \alpha_{A B} \\
-18.37=-36.7-175 \alpha_{A B} \rightarrow
\end{gathered}
$$

$$
\alpha_{A B}=-0.1050 \frac{\mathrm{rad}}{S^{2}}(c w \operatorname{DIRECTION}(-\hat{k})) \& \alpha_{O A}=-4.34 \frac{\mathrm{rad}}{\mathrm{~S}^{2}}
$$

Motion Relative to Rotating Axes:

$$
w=\dot{\theta} k=\frac{d \theta}{d t} \quad \geqslant w d t=d \theta
$$

(dî) Is small change in î,

$$
\begin{aligned}
& {[\mathbf{d i ̂}=\mathbf{d} \theta \hat{\jmath}]} \\
& \frac{d i}{d t}=\frac{d \theta}{d t} \hat{\jmath} \rightarrow \hat{\imath}=\dot{\theta} \hat{\jmath}=w \hat{\jmath}
\end{aligned}
$$



$$
\begin{aligned}
& \frac{d i}{d t}=\frac{d \theta}{d t} \hat{\jmath} \rightarrow \hat{\imath}=\dot{\theta} \hat{\jmath}=w \hat{\jmath} \\
& \dot{\hat{i}}=\omega \hat{\mathrm{j}} \text { and } \dot{\hat{\mathrm{j}}}=-\omega \hat{\mathrm{i}} \\
& W \times \hat{\imath}=w \hat{\jmath} \\
& \text { Or } \\
& \dot{\hat{i}}=\vec{\omega} \times \hat{i} \quad \text { and } \dot{\hat{j}}=\vec{\omega} \times \hat{\mathrm{j}} \\
& \rightarrow \hat{\mathbf{l}}=\mathbf{w} \hat{\mathbf{\jmath}}=\mathbf{w} \mathbf{x} \hat{\mathbf{i}} \\
& \overrightarrow{\hat{1}}=\vec{W} \overrightarrow{\hat{l}} \quad \text { and } \quad \overrightarrow{\hat{\imath}}=\vec{W} \overrightarrow{\hat{\jmath}}
\end{aligned}
$$

## Relative velocity:

$$
\begin{aligned}
\overrightarrow{\mathrm{r}_{\mathrm{A}}} & =\overrightarrow{r_{B}}+\vec{r}=\overrightarrow{r_{B}}+\left(x_{i}+y_{i}\right) \\
\overrightarrow{r_{A}} & =\overrightarrow{r_{B}}+\frac{d}{d t}\left(x_{i}+y_{j}\right) \\
& =\overrightarrow{r_{B}}+(x \hat{\hat{1}}+\dot{\hat{\jmath}})+(\dot{x} \hat{\imath}+\dot{y} \hat{\jmath}) \\
& =\overrightarrow{r_{B}}+(x(\vec{w} X \overrightarrow{\hat{\imath}}))+(y(\vec{w} X \overrightarrow{\hat{\jmath}}))+(\dot{x} \hat{\imath}+\dot{y} \hat{\jmath}) \\
& =\overrightarrow{r_{B}}+\vec{w} \mathrm{X}\left(x_{i}+y_{i}\right)+\overrightarrow{v_{r e l}}
\end{aligned}
$$

$$
\overrightarrow{\mathrm{r}_{\mathrm{A}}}=\overrightarrow{r_{B}}+\vec{w} \mathrm{X} \vec{r}+\overrightarrow{v_{\text {rel }}}
$$

$$
\overrightarrow{\mathrm{v}_{\mathrm{A}}}=\overrightarrow{v_{B}}+\vec{w} \mathrm{X} \vec{r}+\overrightarrow{v_{r e l}} \longrightarrow \text { Transformation of the time derivative of the position }
$$ $\downarrow \quad$ vector between rotating and non rotating axes

This equation can be generalized for any vector quantity ( V )

+ Transformation of a time derivative: $\left(\frac{d \vec{v}}{d t}\right)_{x y}=(\underbrace{d t})_{x y}+\vec{w} \mathrm{X} \vec{v}$

$$
\underbrace{\left(\dot{v}_{x} \hat{\imath}+\dot{v}_{y} \hat{\jmath}\right)}_{\overrightarrow{v_{\text {rel }}}}+\left(v_{x} \dot{\hat{\imath}}+v_{y} \dot{\hat{\jmath}}\right)
$$

$f \stackrel{v_{\text {rel }}}{ }$ : velocity of $A$ relative to the

# Relative <br> Acceleration 

$$
\begin{gathered}
\vec{v}_{A}=\vec{v}_{B}+\vec{w} \times \vec{r}+\vec{v}_{r e l} \\
\overrightarrow{\dot{v}}_{A}=\overrightarrow{\dot{v}}_{B}+\overrightarrow{\dot{w}} \times \vec{r}+\vec{w} \times \overrightarrow{\dot{r}}+\overrightarrow{\dot{v}}_{r e l} \\
\vec{a}_{A}=\vec{a}_{B}+\overrightarrow{\dot{w}} \times \vec{r}+\vec{w} \times \overrightarrow{\dot{r}}+\overrightarrow{\dot{v}}_{r e l}
\end{gathered}
$$

Using previous relations and manipulation:


General vector expression for the absolute acceleration of a particle A in terms of its acceleration $\vec{a}_{r e l}$ measured relative to a moving coordinate system which rotates with an angular velocity $\mathbf{w}$ and angular acceleration $\dot{\boldsymbol{w}}$

## Coriolis Acceleration

It equal $2 \vec{w} \times \vec{v}_{\text {rel }}$.
It represent the difference between the acceleration of A as measured from non-rotating axes and from rotating axes

If $P$ is a coincident point with $A$ on a rigid body. We can wrtie the following relation:

$$
\vec{a}_{A}=\vec{a}_{P}+2 \vec{w} \times \vec{v}_{r e l}+\vec{a}_{r e l}
$$

Example:


Determine the velocity of a pin A (VA) and the velocity of A relative to the rotating slot in OD (VA/P slop) .

Use $\mathrm{X}-\mathrm{Y}$ as rotating axis attached to OD:
Solution:

$$
V A=V B+w \times r+V r e s
$$

Origin is fixed at $\mathrm{O}(\mathrm{Vz}=0)$

$V A=w \times r+$ Vres
$V A=\underset{c a}{w} \times \underset{c a}{r}=\underset{c a k}{w} \times[(225) \cos 45(-i)+225 \sin 45(-j)]=\underset{c a k}{w} \times \frac{225}{\sqrt{2}}(-i-j)=\frac{225}{\sqrt{2}} \underset{c a}{w}(i-j)$ ${ }_{p}^{r}=\overline{O P} i=\sqrt{(45-225)^{2}+225^{2}} \quad i=450 \sqrt{2} j \mathrm{~mm} / \mathrm{s}$
$\underset{r e s}{V}=\dot{x} i$
$V A=450 \sqrt{2} j+\dot{x} i=\frac{225}{\sqrt{2}} \underset{c a}{w}(i-j)$
2 equs 2 unknowns

## Solution:

$\omega_{C A}=-4 \mathrm{rad} / \mathrm{s}(c c \omega)$;
$\dot{x}=v_{r e l}=-450 \sqrt{2} \mathrm{~mm} / \mathrm{s}$;
$v_{A}=r \omega=(225)(4)=900 \mathrm{~mm} / \mathrm{s}$;
$v_{P}=\overline{O P} \omega=(225 \sqrt{2})(2)=450 \sqrt{2} \mathrm{~mm} / \mathrm{s}$;
$v_{A / P}=v_{\text {rel }}=450 \sqrt{2} \mathrm{~mm} / \mathrm{s}$;
Check :
$v_{A / P}=v_{A}-v_{P}$
$450 \sqrt{2} \stackrel{\circledR}{=} 900-450 \sqrt{2}$
$900 \stackrel{〔}{=} 2(450 \sqrt{2})=900$
Should add vectors and not magnitudes.

## CHAPTER 16

## Plane Kinetics Of Rigid Bodies

$\Rightarrow$ Force , Mass and Acceleration
** General Equations Of Motion
$\Sigma \vec{F}=m \overrightarrow{\bar{a}}$
Where:
$m$ : Mass of rigid body
$\overrightarrow{\bar{a}}$ : Acceleration of mass center $G$

$$
\sum M_{G}=\dot{H}_{c}
$$



## Plane-motion equations:



$$
\begin{aligned}
\dot{H}_{G} & =\sum \overrightarrow{\boldsymbol{\rho}_{\boldsymbol{i}}} x m_{i}\left(\vec{w} \times \overrightarrow{\boldsymbol{\rho}_{\boldsymbol{i}}}\right) \\
\left|H_{G}\right| & =\sum \overrightarrow{\boldsymbol{\rho}_{\boldsymbol{i}}} \quad x m_{i} \times \vec{w} \\
& =\sum \boldsymbol{\rho}_{\mathbf{i}}^{2} \quad x m_{i}
\end{aligned}
$$

$$
\rightarrow H_{G}=\bar{I} w
$$

$$
(G=m v)
$$

$$
\sum M_{G}=\dot{H}_{G}=\bar{I} \dot{W}=\bar{I} \alpha
$$

$$
\left(\sum F_{a}=m \dot{a}\right)
$$

## Ch-6 plane kinetics of Rigid Bodies

Force, Mass and Acceleration
General Eqns of Motion

Alternative moment equ.
$\sum \overrightarrow{\mathrm{Mp}}=\overrightarrow{\mathrm{HG}}+\vec{\rho} \times m \vec{a}$


In terms of Ip (moment of inertia a bout p):


If $P$ is a fixed point (o) with $=0$

$\sum_{0}=M_{0} O$

For a system of interconnected bodies:
$\sum M p=\sum \overline{I \alpha}+\sum m \bar{a} d$

Fixed-Axis Rotation


$$
\begin{aligned}
& \bar{a} t=\bar{r} \alpha \\
& \bar{a} n=\bar{r} w^{2} \\
& \sum M G=\bar{I} \alpha \\
& \sum M_{0}=I_{0} \alpha
\end{aligned}
$$

$$
\text { Because } \sum M Q=0
$$

As the resultant force pass through it

## General plane motion

```
\sumf=mā
\sumMG = \overline{l}\alpha
\sumMP = l \alpha +ma\overline{a}d
```



Ex.
Metal hoop is released from rest find $\alpha$ and time to move 3 m , Assume the hoop rolls without slipping.


## Work and Energy./Rigid bodies.

## Work -Energy Relations

(a) Work of forces and couples:

$$
U=\int \vec{F} \cdot d \vec{r}=\int F \cos \alpha \cdot d s \quad \text { Force in the direction of displacement. }
$$



$$
U=\int M \cdot d \theta
$$

Couple
(b) Kinetic Energy $T=\frac{1}{2} m v^{2} \longrightarrow$ Translation

Fixed- axis rotation: $T=\frac{1}{2} I_{o} w^{2}$
General plane Motion: $T=\frac{1}{2} m \vec{v}^{2}+\frac{1}{2} I w^{2} \longrightarrow$ Angular velocity
Velocity of the Center Moment of inertia about
of mass $\mathbf{G}$
Mass center G

Also $T=\frac{1}{2} I_{c} w^{2}$
Moment of inertia about $\mathbf{C}$ (Instantaneous center of zero velocity).
(c) Potential Energy
work-energy equation: $U^{\prime}{ }_{1-2}=\Delta T+\Delta V_{g}+\Delta V_{e}$ Due to gravity
(d) Power:

$$
P=\vec{F} \cdot \vec{V}=\frac{d V}{d t}
$$


© Power $=\frac{\partial v}{\partial t}=\frac{M \partial \theta}{\partial t}=\overrightarrow{M \omega}$, due to a couple $M$.

- Total power $=F . V+M \omega$,
- Virtual Work: It is the work calculated using a virtual displacement and (assumed), linear or angular.
- Center of percussion (Q): The resultant of all forces applied to the body must pass through it. The sum of the moments of all forces about the center of percussion is always ZERO.

$$
\circ I=\int r^{2} \partial m K=\sqrt{\frac{1}{m}}=\text { Radius of gyaration }
$$

$$
\circ I .=K .^{2} m \sum M .=I . \propto
$$

$$
\circ q=\frac{K^{2}}{r}
$$



- What is I (moment of inertia?) resistance to rotation $\rightarrow$ H.=I.w
- Instantaneous center of zero velocity (not acceleration)!


Parallel velocities

## End of the course

Author: Dr. Osama M. Al-Habahbeh
University of Jordan
Email: o.habahbeh@ju.edu.jo
hapapar@yahoo.com

