

Biofuels

Lec 3-Biogas: part 3

Dr.-Eng. Zayed Al-Hamamre

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Content

- > Upgrading techniques:
 - o Chemical absorption
 - o High pressure water scrubbing
 - o Pressure swing adsorption
 - o Cryogenic separation
 - o Membrane separation

Need for the Biogas Enrichment and Bottling

- ➤ Potential of biogas is not fully utilized and commercialized so far.
- For commercialization, its area of application may widen; from cooking fuel to vehicle fuel.
- For use as a vehicle fuel, it should be bottled like CNG.
- ➤ Before bottling, it should enriched in methane content from 55 % to 95 %; similar to NG.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Upgrading techniques

- Chemical absorption
- High pressure water scrubbing
- Pressure swing adsorption
- Cryogenic separation
- Membrane separation

Process

Input/output

Cost estimation

Investment costs
Running costs

Waste streams

Ease of operation

$$Output = \frac{input \cdot \%CH_4 \cdot yield}{purity}$$

 $Price \ per \ Nm^3 \ biogas = \frac{\frac{investment}{depreciation \ period} + investment \times interest \ rate + running \ costs}{\frac{depreciation \ period}{depreciation \ period}} + investment \times interest \ rate + running \ costs$

Nm³ produced biogas per year

CO₂ & H₂S Removal Processes from Biogas:

S. No.	Method	Advantages	Disadvantages
1,	Absorption in Water	One of the easiest and cheapest methods for CO ₂ removal. Recommended for rural application.	Water pumping load is high. CO ₂ can not be recovered
2.	Absorption by Chemicals	The chemical absorbents are more efficient in low pressure and can remove CO ₂ to low partial pressures in treated gas.	Regeneration of the solvent requires a relatively high energy input. Disposal of by-product formed due to chemical reactions is a problem.
3.	Pressure Swing Adsorption	By proper choice of the adsorbent, this process can remove CO ₂ , H ₂ S, moisture and other impurities.	Adsorption is accomplished at high temperature and pressure. Regeneration is carried out by vacuum. It is a costly process.
4.	Membrane Separation	Modular in nature and separate CO_2 and CH_4 effectively.	High pressure requirement. The processing cost is also high.
5.	Cryogenic Separation	Allows recovery of pure component in the form of liquid, which can be transported conveniently	High cost involved makes it impractical for Biogas applications.
6.	Chemical Conversion	Extremely high purity in the product gas.	Process is extremely expensive and is not warranted in most Biogas applications.

CO₂ & H₂S Removal Processes from Biogas:

- ➤ Among various methods of enrichment i.e. Chemical absorption, Pressure Swing Adsorption (PSA), membrane separation;
- ➤ Water scrubbing (the use of pressurized water as an absorbent liquid) is found to be a suitable method for biogas enrichment in rural areas.
- \triangleright It is simple, continuous and cheap process compared to other processes and also absorb H_2S .
- ➤ Enriched biogas can further compress up to 20 MPa pressure for optimum gas storage in cylinders.
- ➤ It is essential to have more energy per unit volume of compressed biogas and to get rid of the corrosive effect of H₂S.

Biogas Enrichment and Bottling

- For economic viability of biogas bottling, its availability should be in large quantity.
- > Plants linked with Dairy (350 cattle or more), sewage treatment plants are suitable for this work.
- ➤ Biogas bottling may start new business venture in villages. Thus, open up new era of employment and income generation for village people.
- ➤ Biogas manure enhances the organic content of soil, thereby increases water holding capacity of soil.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

High pressure water scrubbing

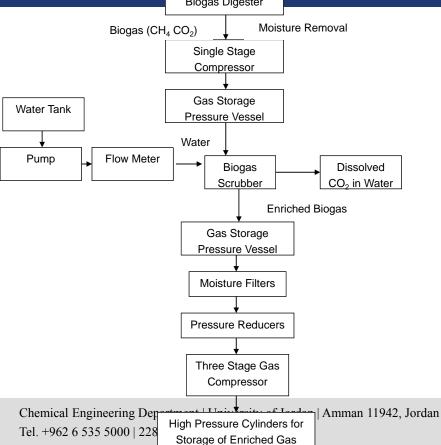
- Carbon dioxide is more soluble in water than methane.
- This phenomenon is employed to remove CO₂ from biogas in water scrubbing technologies.
- ➤ Biogas is fed to a column where it is "washed" with counter-current water that
- is sprayed from the top of the column.
- The column is normally filled with some material to enhance the interface area promoting CO2 absorption.
- The CO2 is dissolved in the water that is then pumped to a "regeneration column" where CO2 is released.
- The regeneration of the water scrubbing process can be carried out at higher temperatures or at lower pressures
- The solubility of CO₂ in water strongly increases at lower temperatures. In order to reduce pumping energy, the water should be available at low temperatures Chemical Engineering Department | University of Jordan | Amman 11942, Jordan

Tel. +962 6 535 5000 | 22888

Design of Water Scrubbing System

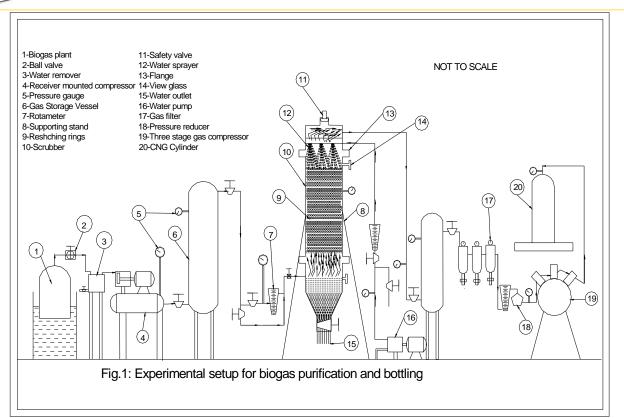
- ➤ Water scrubbing method is found most suitable for biogas enrichment in rural areas.
- \triangleright Water is good solvent for CO_2 .
- ➤ The solubility of CO₂ in water is governed by variation in pressures and temperatures.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

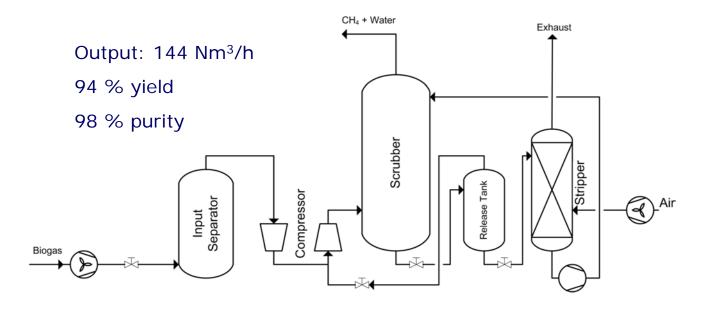


System Operation

- 2201110
- Raw biogas is compressed up to 1.0 MPa pressure to enhance solubility of CO₂ in water.
- Pressurized biogas is sent into bottom section of the scrubber.
- Packing material is used to enhance the contact time (interfacial area) between gas and water.
- Pressurized water is sprayed from top to absorb the CO₂ from pressurized biogas.



Process flow chart of biogas enrichment and compression system Biogas Digester Moisture Removal



Biogas Enrichment and Bottling System

High pressure water scrubbing

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

High pressure water scrubbing

Cost estimation

	HPWS
Investment costs (€)	440,000
Running costs (€)	120,000
Price per Nm³ biogas (€)	0.15

Chemical absorption (I)

- ➤ It is possible to use other chemicals to absorb CO₂
- ➤ The technology is also composed by absorption tower where the chemical solvent is flushed to selectively absorb CO₂
- The saturated absorbent is then heated in a regeneration tower, releasing CO₂
- ➤ The selection of the solvent for this process is quite important since the "energy" of CO₂ absorption dictates the final consumption of energy of the system.
- ➤ Chemicals which strongly absorb CO₂ (like amines) are more suitable to upgrade methane with relatively low content of CO₂ to a very high purity.
- ➤ Different examples of physical absorbents are: methanol, Selexol, Rectisol, Genosorb, Morphysorb

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical absorption (I)

- ➤ The H₂S was removed by means of chemical absorption in an iron-chelated solution catalyzed by Fe/EDTA
- > The process:
 - Has a high efficiency of H₂S removal,
 - o the selective removal of H₂S and the low consumption of the chemicals because iron chelated solutions functions as a pseudo-catalyst that can be regenerated.
 - o Convert the H₂S into a more stable or valuable product (into S).
 - The advantage of these processes is the conversion of a pollutant into a chemical product or at least a solid residue that can be disposed of easily and safely.

Chemical absorption (I)

➤ In processes based on iron chelating, H₂S is initially physically absorbed into water undergoing the dissociation according to reactions

$$H_2S(g) + H_2O \Leftrightarrow H_2S(aq)$$
 (1)

$$H_2S(aq) \Leftrightarrow H^+ + HS^-$$
 (2)

$$HS^- \Leftrightarrow H^+ + S^{-2}$$
 (3)

> The formation of S occurs by means of sulphide oxidation by the chelated iron according to the reaction described

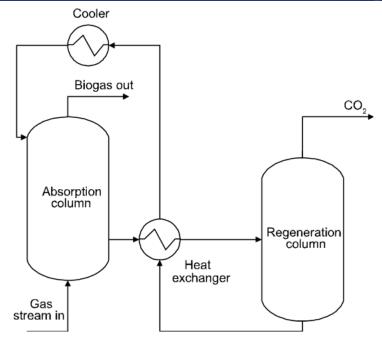
$$S^{-2} + 2Fe^{+3} \Leftrightarrow S^{0} + 2Fe^{+2}$$
 (4)

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

➤ Regeneration of the aqueous iron-chelated solution occurs by means of its oxygenation, followed by conversion of the pseudo-catalyst into its active form Fe⁺³

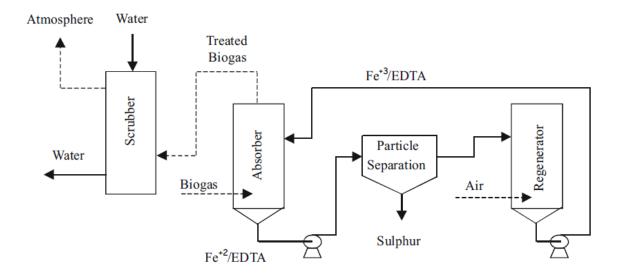
$${}^{1}/_{2} O_{2}(g) + H_{2}O(1) \rightarrow {}^{1}/_{2}O_{2}(aq)$$
 (5)

➤ This is followed by conversion of the pseudo-catalyst into its active form Fe⁺³


$$\frac{1}{2}$$
 O₂ (aq) + 2Fe⁺² \rightarrow 2Fe⁺³ +2OH (6)

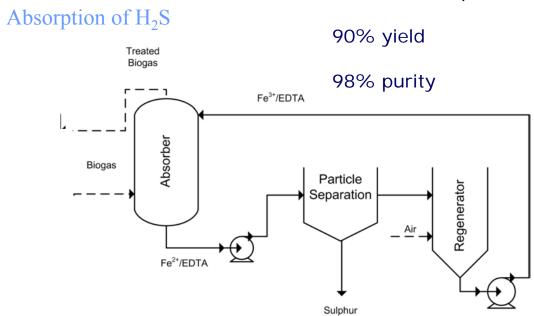
Chemical absorption (I)

Absorption of CO₂



Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Chemical absorption (I)



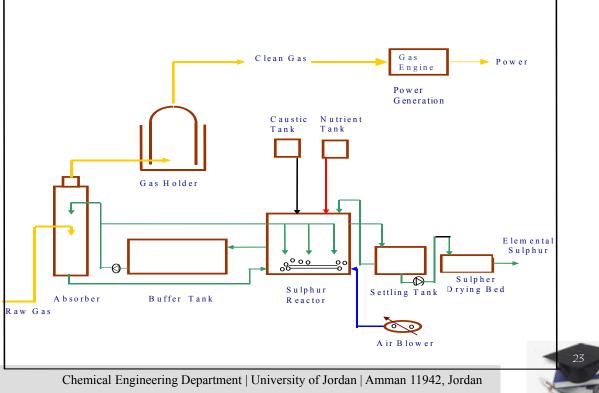
Chemical absorption (II)

Combined output: 137 Nm³/h

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

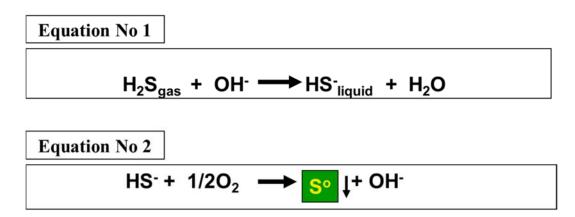
Chemical absorption (III)

Cost estimation


	CO ₂ absorption	H ₂ S absorption	Total upgrading process
Investment costs (€)	353,000	516,000	869,000
Running costs (€)	134,500	99,500	179,500
Price per Nm³ biogas (€)	0.17	0.16	0.28

Bioskrubber: Biological H₂S Removal System

Process Flow Diagram



Tel. +962 6 535 5000 | 22888

Bioskrubber: Biological H₂S Removal System

➤ <u>Bioskrubber</u> is a biological caustic scrubber to remove H₂S from biogas, in which the spent caustic solution is continuously regenerated in the bioreactor

Advantages

- Clean bio-technology for H₂S cleaning.
- Low operating cost of biogas up to 92% caustic recycled.
- Successful commercially operating plants for last 8 years.
- Projects using <u>BIOSKRUBBER</u> PROCESS worth 30 MW of power successfully commissioned.
- Very high H₂S removal efficiency over 99%.
- H₂S reduction to less than 250 ppm guaranteed.
- No expensive catalyst and chemical required.
- Operation at ambient temperature, pressure and PH between 8 and 8.5.
- Elemental SULFUR as bi-product with 90% purity.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Additional benefits of H₂S removal

Impact On Surrounding air.

- ➤ H₂S is Highly Corrosive Can damage other equipment's and expensive instruments in the vicinity.
- > Health Hazard and odour nuisance.

Pressure swing adsorption (I)

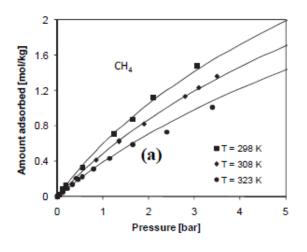
- Pressure Swing Adsorption (PSA) is the second most employed techniques for biogas
- ➤ In a PSA unit for biogas upgrading, an adsorbent material is subjected to pressure changes to selectively adsorb and desorb CO₂
- \triangleright biogas is compressed to a pressure between 4-10 bar and is fed to a vessel (column) where is putted in contact with a material (adsorbent) that will selectively retain CO_2
- The adsorbent is a porous solid, normally with high surface area.
- ➤ Most of the adsorbents employed in the commercial processes are carbon molecular sieves (CMS) but also activated carbons, zeolites and other materials (titanosilicates) are employed.
- The purified CH₄ is recovered at the top of the column with a very small pressure drop.

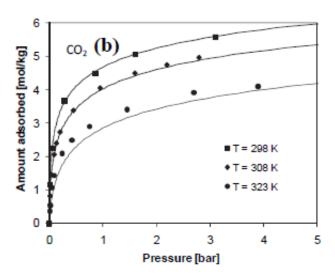
Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Pressure swing adsorption (II)

- ➤ After certain time, the adsorbent is saturated with CO₂, and the column needs to be regenerated by reducing the pressure (normally to vacuum for biogas upgrading).
- ➤ The adsorption of H₂S is normally irreversible in the adsorbents and thus a process to eliminate this gas should be placed before the PSA
- ➤ Alternatively, depending on the choice of the adsorbent, the humidity contained in the biogas stream can be removed together with CO₂ in the same unit.
- ➤ Multi-column arrays are employed to emulate a continuous process.
- ➤ For small applications subjected to discontinuities, a single column with storage tanks may be used.
- ➤ One of the most important properties of the PSA process is that is can be adapted to biogas upgrading in any part of the world since it does not depend on the availability of cold or hot sources

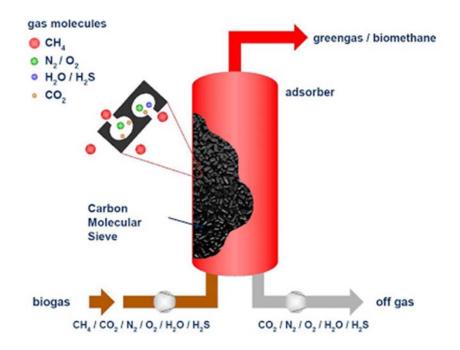
Pressure swing adsorption (II)




- The material selected should at least satisfy one of two criteria:
- i. Have a higher selectivity to CO₂:
 - o This gas should be more "attached" to the surface of the material than CH₄; in most solids CO₂ can create stronger bonds with surface groups than CH₄.
 - This kind of materials will be termed as equilibrium-based adsorbents since its main selectivity is due to differences of interaction forces between CO₂ and CH₄ with and the surface.
- ii. The pores of the adsorbent:
 - o It can be adjusted in such a way that CO_2 (kinetic diameter of 3.4 Å) can easily penetrate into their structure while larger CH4 molecules (kinetic diameter of 3.8 Å) have size limitations to diffuse through them.
 - These materials will be termed as kinetic adsorbents since its main selectivity is due to diffusion constrains.

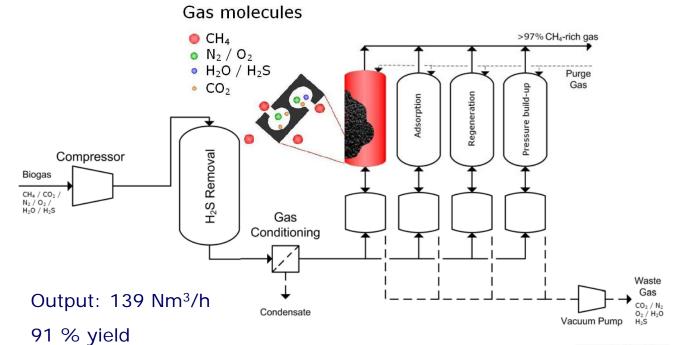
Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Pressure swing adsorption (II)



Adsorption equilibrium of CO₂ (a) and CH₄ (b) on zeolite 13X at 298, 308 and 323 K

Pressure swing adsorption (II)



Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Pressure swing adsorption (II)

98 % purity

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

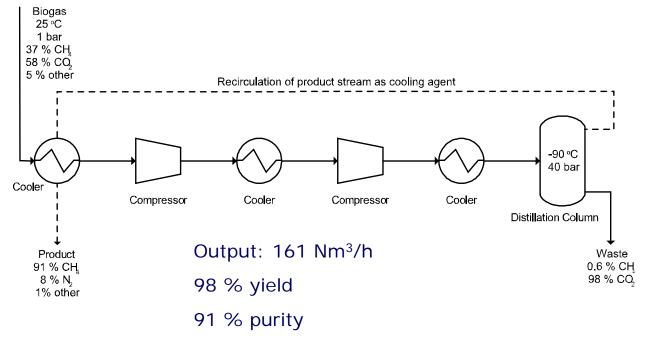
Pressure swing adsorption (III)

> Cost estimation

	PSA
Investment costs (€)	805,000
Running costs (€)	187,250
Price per Nm³ biogas (€)	0.26

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Cryogenic separation (I)



- ➤ Low temperature distillation (cryogenic separation) is a commercial process commonly used to liquefy and purify CO₂ from relatively high purity (> 90%) sources.
- ➤ It involves cooling the gases to a very low temperature so that the CO₂ can be liquefied and separated.
- ➤ Distillation generally has good economies of scale.
- \triangleright This method is worth considering where there is a high concentration of CO₂ in the waste gas.
- ➤ The advantage is that it produces a liquid CO₂ ready for transportation by pipeline.
- ➤ The major disadvantages of this process are the amount of energy required to provide the refrigeration and the necessary removal of components that have freezing points above normal operating temperatures to avoid freezing and eventual blockage of process equipment.

Cryogenic separation (I)

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Cryogenic separation (II)

Cost estimation

	Cryogenic separation
Investment costs (€)	908,500
Running costs (€)	397,500
Price per Nm³ biogas (€)	0.40

Membrane separation (I)

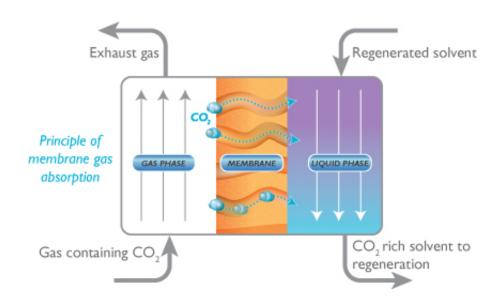
- ➤ The use of membranes for gas cleaning is a well established technology in chemical industries.
- ➤ The membrane is a porous material that let some gases permeate through its structure.
- ➤ Employing an adequate material, it is possible to have selectivity between the gases of the mixture to be separated
- \triangleright Two different streams are obtained: a permeate gas (mainly CO₂ water and ammonia) and the retentate (concentrated CH₂).
- ➤ The most commonly employed materials are hollow fibres made of different polymers.
- ➤ The biogas is compressed to 16 bars and then routed to a two-stage membrane process where methane with purity higher than 90% can be obtained.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Membrane separation (I)

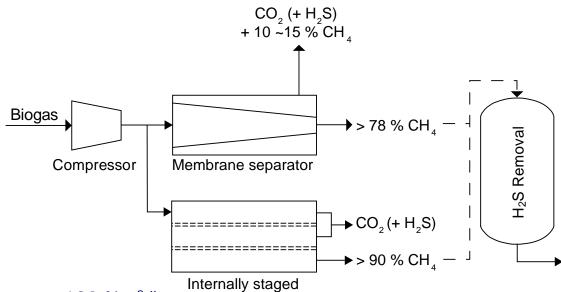
- > Compared to absorption separation, the advantages of the membrane process are
- i. It does not require a separating agent, thus no regeneration is required;
- ii. The systems are compact and lightweight, and can be positioned either horizontally or vertically, which is especially suitable for retrofitting applications;
- iii. Modular design allows optimization of process arrangement by using multi-stage operation; and
- iv. Low maintenance requirements because there are no moving parts in the membrane unit.

Membrane separation (I)


- ➤ A number of solid polymer membranes are commercially available for the separation of CO₂ from gas streams, primarily for natural gas sweetening.
- ➤ These membranes selectively transmit CO₂ versus CH₂.
- ➤ The driving force for the separation is pressure differential across the membrane.
- As such, compression is required for the feed gas in order to provide the driving force for permeation, and the separated CO₂ is at low pressure and requires additional compression to meet pipeline pressure requirements.
- ➤ The energy required for gas compression is significant when a very high pressure is required
- ➤ The commercial membranes for CO₂ separation are mainly prepared from cellulose acetate, polysulfone, and polyimide.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Membrane separation (I)



Membrane separation (II)

Output: 130 Nm³/h

78 % yield

90 % purity

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Membrane separation (III)

Cost estimation

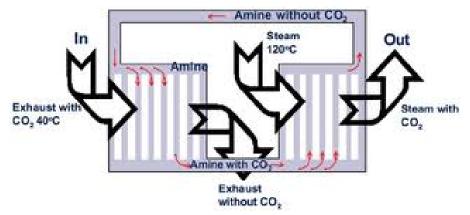
	Membrane separation	Total upgrading process
Investment costs (€)	233,000	749,000
Running costs (€)	81,750	126,750
Price per Nm³ biogas (€)	0.11	0.22

Hybrid Membrane/Amine Processes

- ➤ It may be desirable to apply amine and membrane technologies in tandem, thereby forming a hybrid process, to capture CO₂ from flue gas.
- ➤ Micro-porous hollow fiber membranes are evolving as a new technology for CO₂ separation using amine-based chemical absorption processes.
- ➤ Micro-porous membranes are used in the gas-liquid unit where the amine solution is contacted with the CO₂ containing flue gas.
- ➤ The principle advantage of the micro-porous membrane is the reduction in the physical size and weight of the gas-liquid contacting unit.
- ➤ Unlike conventional membrane separation, the micro-porous hollow fiber membrane separation is based on reversible chemical reaction, and mass transfer occurs by diffusion of the gas through the gas/liquid interface just as in the traditional contacting columns.

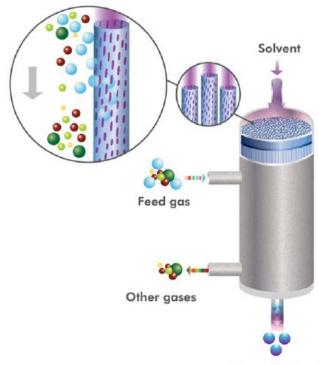
Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Hybrid Membrane/Amine Processes


- The hollow fiber membrane itself does not contribute to the separation but instead acts as a contacting medium between the gases the liquid.
- ➤ There are a number of advantages to using the gas-liquid membrane contactors, including:
 - i. High gas/liquid contact area due to the high packing density of the hollow fibers $(500 \text{ to } 1,500 \text{ m}^2/\text{m}^3 \text{ versus } 100\sim250 \text{ m}^2/\text{m}^3 \text{ for a conventional column}).$
 - ii. Foaming is eliminated since because the gas flow does not impact the solvent and there is no connective dispersion of gas in the liquid.
- iii. The membrane acts as a partition between the gas and liquid, and the gas/liquid flow rate ratio may vary in a wide range without causing flooding problems.
- iv. The available gas/liquid contact area is not disturbed by variations in flow rates. This means the process can tolerate a wider range of process condition variations.

Hybrid Membrane/Amine Processes

- v. Solvent degradation is minimized as oxygen (a degradation agent to amines) is prevented from intimate contact with the solvents.
- vi. Unlike the absorption column that can only be operated vertically, the hollow fiber membrane contactor may be operated in any orientation to suit the overall plant layout.



Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Hybrid Membrane/Amine Processes

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Comparison

Technique	Investment cost €	Running cost	Cost price upgraded biogas ϵ/Nm^3 biogas	Maximum achievable yield %	Maximum achievable purity %	Advantages	Disadvantages
Chemical absorption	869,000	179,500	0.28	90	98	- Almost complete H_2S removal	Only removal of one component in column Expensive catalyst
High pressure water scrubbing	440,000	120,000	0.15	94	98	Removes gases and particulate matter High purity, good yield Simple technique, no special chemicals or equipment required Neutralization of corrosive gases	- Limitation of H_2S absorption due to changing pH - H_2S damages equipment - Requires a lot of water, even with the regenerative process
Pressure swing adsorption	805,000	187,250	0.26	91	98	\cdot More than 97% CH_4 enrichment \cdot Low power demand \cdot Low level of emissions \cdot Adsorption of N_2 and O_2	- Additional complex H_2S removal step needed
Cryogenic separation	908,500	397,500	0.40	98	91	Can produce large quantities with high purity Easy scaling up No chemicals used in the process	· A lot of equipment is required
Membrane separation	749,000	126,750	0.22	78	89.5	Compact and light in weight Low maintenance Low energy requirements Easy process	\cdot Relatively low CH_4 yield \cdot H_2S removal step needed \cdot Membranes can be expensive

Method	ethod Option/Alternative Advantages		Disadvantages
Absorption	with water	High efficiency (>97% CH ₄), Simultaneous removal of H ₂ S when H ₂ S < 300 cm ₃ /m ³ , Capacity is adjustable by changing pressure or temperature, Low CH ₄ losses (<2%), tolerant to impurities	Expensive investment and operation, clogging due to bacterial growth, possible foaming, low flexibility toward variation of input gas
Absorption polyethyler		High efficiency (>97% CH ₄), Simultaneous removal of organic S components, H ₂ S, NH ₃ , HCN and H ₂ O, Energetic more favorable than water, Regenerative, low CH ₄ losses	Expensive investment and operation, difficult operation, Incomplete regeneration when stripping/vacuum (boiling required), reduced operation when dilution of glycol with water
Chemical absorption with amines		High efficiency (>99% CH ₄), cheap operation, Regenerative, More CO ₂ dissolved per unit of volume (compared to water), very low CH ₄ losses (<0.1%)	Expensive investment, heat required for regeneration, corrosion, decomposition and poisoning of the amines by O ₂ or other chemicals Precipitation of salts, possible foaming
PSA/VSA	Carbon molecular sieves Zeolites Molecular sieves Alumina silicates	Highly efficient (95-98% CH ₄), H ₂ S is removed, low energy use: high pressure, compact technique, also for small capacities, tolerant to impurities	Expensive investment and operation, extensive process control needed, CH4 losses when malfunctioning of valves

	1		l .
Membrane technology	Gas/gas Gas/liquid	H ₂ S and H ₂ O are removed, simple construction, Simple operation, high reliability, small gas flows treated without proportional increase of costs Gas/gas: removal efficiency: <92% CH ₄ (1 step) or > 96% CH ₄ , H ₂ O is removed Gas/liquid: Removal efficiency: > 96% CH ₄ , cheap investment and operation, Pure CO ₂ can be obtained	Low membrane selectivity: compromise between purity of CH4 and amount of upgraded biogas, multiple steps required (modular system) to reach high purity, CH4 losses.
Cryogenic separation		90-98% CH ₄ can be reached, CO ₂ and CH ₄ in high purity, low extra energy cost to reach liquid biomethane (LBM)	Expensive investment and operation. CO ₂ can remain in the CH ₄
Biological removal		Removal of H ₂ S and CO ₂ , enrichment of CH ₄ , no unwanted end products	Addition of H ₂ , experimental - not at large scale

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Further R&D Work Required for Biogas Development

- -21301116
- ➤ Biogas production using easily available local waste material preferably agricultural wastes.
- ➤ Development of new and low cost improved designs of biogas plants for large sizes.
- ➤ Development of low cost technology for separation of methane, CO₂ and sulfur compounds from biogas for easy bottling of pure methane and to reduce the damages caused by S-compounds on machines using the biogas.

Further R&D Work Required for Biogas Development

- The effect of bio-wash (liquid from digested slurry) on vegetables and crops.
- Design of kitchen waste biogas plant for restaurants
- Testing of oil seed cake based biogas plant slurry for nutrient value and its effect on crop production

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Summary

- ➤ High pressure water scrubbing cheapest option
- > HPWS & membrane easy to operate and no chemicals needed
- ➤ Membrane separation is promising
- Each technique has its advantages depending on the goal
- > HPWS best overall performance:
- high yield and purity
- compact setup
- no chemicals
- only one waste stream

