Faculty of Engineering and Technology Department of Chemical Engineering

Fuel and Energy

Oil Shale

Dr.-Eng. Zayed Al-Hamamre

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Content

- Definition \succ
- Composition \succ
- **Types of Oil Shales** \geq
- **Recovery Methods** \geq

Definition

- > Oil shales are diverse fine-grained rocks, which contain refractory organic material that can be refined into fuels.
- > Soluble bitumen fraction constitutes about 20% of this organic material, whereas the remainder exists as an insoluble kerogen.
- > Oil shale is a compact, laminated rock of sedimentary origin, yielding over 33% of ash and containing organic matter that yields oil when distilled, but not appreciably when extracted with the ordinary solvents for petroleum
- > The organic matter in oil shale contains both bitumen and kerogen.
- > Bitumen content in oil shale constitutes only a minor portion.
- > It is soluble in most organic solvents, it is not difficult to extract it from oil shale.
- > The bulk of the organic matter is composed of kerogen, which is insoluble and inert.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Composition

Inorganic matrix

Bitumens (soluble in CS_2)

Quartz Feldspars Clays (mainly illite and chlorite) Carbonates (calcite and dolomite) Pyrite and other minerals

Oil shale

Kerogens (insoluble in CS_2) (containing U, Fe, V, Ni, Mo)

General scheme of the oil-shale components

	$\frac{\text{FeS}_2}{\text{NaAlSi}_2O_6} \cdot \text{H}_2\text{O}$ (analcite)		0.86%	0.86%	
Composition			4.3%		
Average chemical composition of Green River oil shale, as determined by the writers for several samples from Rifle, Colorado.	SiO ₂ (quartz)		8.6%		
	KAl ₄ Si ₇ AlO ₂₀ (OH) ₄ 12.9% (illite) montmorillonite muscovite				
	KAlSi $_{3}O_{8}$ (K-feldspar) NaAlSi $_{3}O_{8}$ -CaAl $_{2}Si_{2}O_{8}$ 16.4% (plagioclase)				
	0	22.2%	CaMg(CO ₃) ₂ (dolomite) and calcite 43.1%	Mineral matter 86.2%	Oil shale
	Ca	9.5%			
	Mg	5.8%			
	C	5.6%			
	S, N, O	1.28%	bitumen 2.76 %	Organic matter 13.8%	
	н	1.42%			
	C	11.1%			
Chemical Engineering Tel. +962 6 535 5000			kerogen 11.04%		

Origin of Oil Shale

- Oil shales result from the contemporaneous deposition of fine-grained mineral debris and organic degradation products derived from the breakdown of biota.
- Conditions required for the formation of oil shales, therefore, include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms
- Continued sedimentation provided overburden pressure necessary for the compaction and diagenesis of organically-rich strata.
- Chemical activity at low temperature (as 150°C) results in the loss of volatile fractions, which ultimately produces a sedimentary rock having a high content of refractory organic residues.
- Kerogen and bitumen are of biological origin and are largely derived from the lipid fraction of algae

Types of Oil Shales

> Torbanites

- Constitute the richest type of oil shales, characterized by the low ratio of mineral to organic material content
- o Occur as lenticular bodies, often associated with coal deposits.

➤ Tasmanites

- Marine deposits, formed in very shallow seas adjacent to the coastline and are often laterally related to the terrestrial spore-containing coals.
- Their organic matter is composed of spherical disseminules believed to be algal spores.

➢ Green River oil shale,

• Are of lacustrine origin, intermixed with varying amounts of tuff, siltstone, halite, trona, and nahcolite.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Recovery Methods

Recovery Methods

i. Surface Retorting

- Oil shale is mined (surface or underground), crushed, and then conveyed to a retorter, where it is subjected to temperatures ranging from 500 to 550°C.
- The chemical bonds linking the organic compounds to the remainder of the rock matrix are broken.
- The liberated compounds, in the gaseous state, are collected, condensed, and upgraded into a liquid product that is the rough equivalent of a crude oil

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Recovery Methods

ii. On-site or In Situ Retorting

The process includes: fracturing, injection to achieve communication, and fluid migration, take place at the underground location of the shale bed

Major Process Steps in Thermally Conductive In-Situ Conversion

The Shell In-Situ Conversion Process

Chemical Engineering Depa Tel. +962 6 535 5000 | 2288

SOURCE: Adapted from material provided by Shell Exploration and Production Company.

Recovery Methods

Fracturing

- Through the use of explosives, both conventional and nuclear.
- The process involves heating underground oil shale, using electric heaters placed in deep vertical holes drilled through a section of oil shale to fracture the rock
- The volume of oil shale is heated over a period of two to three years, until it reaches 650–700 °F, at which point oil is released from the shale.
- > The released product is gathered in collection wells positioned within the heated zone.
- Injection of fluids to achieve intercommunication.
- Hot gases, water, and other fluids can be injected into the wells and forced through the fractures.
- These fluids are able to expand the width of the fractures and push the fractures deeper into the shale bed, i.e., extend the fracture.
- If the wells are very close to each other, then it is feasible to have continuous fractures to extend from one well to another

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Recovery Methods

Fluid migration

- > If hot gases are passed through the rock bed, liberation of organic compounds may occur.
- The organic compounds, then, flow along with the gases to a producing well where they can be brought to the surface

limitations and disadvantages

- Shale for surface retorting must be mined and transported to the processing plant, which may cause environmental damage in addition to transport expense
- Present retorting methods all require an expenditure of thermal energy, which may be supplied by electrical arc, gas combustion, or other energy sources. This diminishes the net energy production
- Retorting is not an efficient method for the liberation of organic material locked in oil shales (kerogen removal)

Recovery Methods

of minerals in the rock, cause the formation of organic chemicals that are difficult to refine into fuel. In addition, these high temperatures burn off a great deal of otherwise useful organic material
> Retorting produces large volumes of waste rock, which undergoes a volume increase (about

▶ Present retorting techniques require high temperatures (about 550°C), which, in the presence

- Retorting produces large volumes of waste rock, which undergoes a volume increase (about 10%) during processing. These large volumes of spent shale present an important disposal problem
- Retorting results in the formation of large amounts of the carcinogenic compounds, i.e., 3,4benzopyrene.
- At high temperatures, dehydrogenation of hydrocarbons precedes aromatization. As a consequence, large amounts of hydrogen have to be used during subsequent refining processes.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan Tel. +962 6 535 5000 | 22888

Recovery Methods

- iii. Biochemical recovery method
- Bioleaching is the interaction of biological agents with the oil-shale matrix, regardless of whether the reaction is biochemical, chemical, or physical.
 - Biodegradation and biodisintegration of the inorganic components in the oil-shale matrix.
 - The organic-inorganic linkages can be disrupted by microorganisms to cause the organic components to separate
- > The main drawback of bioleaching is the large amount of water required by this process.

Oil Shale in Jordan

- Jordan has huge reserves of oil shale, currently the 8th largest in the world with more than 40 billion tons of oil shale
- El-lajun surface outcrop. El-lajun is located about 20 km east of Karak city, in Jordan, covering an area of about 50 km²
- Oil shale, by far the largest indigenous energy resource, did not contributed any power since its development is still at the planning stage.
- > The Oil shale is not of high quality.
- Its exploration, development and utilization is rather difficult and currently not economically feasible.

 \triangleright

