

Olanzapine inhibits glycogen synthase kinase-3 β : An investigation by docking simulation and experimental validation.

Mohammad K Mohammad, Ihab M Al-masri, Mutasem O Taha, Mohamed AS Al-Ghussein, Hatim S AlKhatib, Samer Najjar, Yasser Bustanji.

European journal of pharmacology, 584, 1, 185-191 (2008).

Olanzapine was investigated as an inhibitor of glycogen synthase kinase-3 β (GSK-3 β) in an attempt to evaluate its effect on blood glucose level. The investigation included simulated docking experiments to fit olanzapine within the binding pocket of GSK-3 β followed by in vitro enzyme inhibition assay as well as in vivo subchronic animal treatment. Olanzapine was found to readily fit within the binding pocket of GSK-3 β in a low energy orientation characterized with optimal attractive interactions bridging the tricyclic thienobenzodiazepine nitrogen and sulfur atoms of olanzapine and the residue of VAL-135 of GSK-3 β . In vivo experiments showed a significant decrease in fasting blood glucose level in Balb/cmice at 1.0, 2.0 and 3.0 mg/kg dose levels (Pb0.05) and 6 fold increase in liver glycogen level at the 3 mg/kg dose level (Pb0.001). Moreover; olanzapine was found to potently inhibit recombinant GSK-3 β in vitro (IC_{50} value=91.0 nM). Our findings strongly suggest that olanzapine has significant GSK-3 β inhibition activity that could justify some of its pharmacological effects and glucose metabolic disturbances.