THE UNIVERSITY OF JORDAN

PHYSICS DEPARTMENT

PHYSICS 105 (First Exam)

First Semester (Nov. 3rd, 2015)

CONSIDER	ACCELERATION D	UE TO GRAVITY) g	$= 9.8 \text{ m/s}^2$	
		t acceleration has a velo s $x = -30$ cm. What is th		
A) -8.9	B) -5.1	C) 9.8	D) 4.4	E) -6.3
-	alls from a cliff 80 m h fall (in m/s) is:	igh. The magnitude of the	BODINIA IN COMMINGER	ng the first 4
A) 3.5	B) 9.1	C) 14.7	D) 19.6	E) 21.3
		p of building downward eight of the building (in		. It strikes the
A) 58	B) 42	C) 29	D) 17	E) 63
the negative x		walks 15 m along the point. If the time of the wh		
the negative x (in m/s) is				
the negative x (in m/s) is A) 0 Q5) Vectors A What is the ar	- axis back to the orig B) 4 A and B are represented	in. If the time of the wh	D) 5	
the negative x (in m/s) is A) 0 Q5) Vectors A What is the arx-axis?	- axis back to the orig B) 4 A and B are represented	in. If the time of the wh C) 2 as shown in the figure.	D) 5	
the negative x (in m/s) is A) 0 Q5) Vectors A What is the ar x-axis? A) 25°	B) 4 A and B are represented agle of their resultant w	c) 2 as shown in the figure.	D) 5	E) 6
the negative x (in m/s) is A) 0 Q5) Vectors A What is the arx-axis? A) 25° D) 55°	B) 4 A and B are represented agle of their resultant w B) 103° E) 112°	c) 2 as shown in the figure. ith respect to the positive	D) 5	E) 6
the negative x (in m/s) is A) 0 Q5) Vectors A What is the arx-axis? A) 25° D) 55° Q6) A block frictionless su	B) 4 A and B are represented agle of their resultant w B) 103° E) 112° of mass $M = 6.0$ kg is in rface, as shown in the I	c) 2 as shown in the figure.	D) 5 B = 4 lock of mass $m = 4.0 \text{ kg}$ N is applied as show	E) 6 A = 3 on a
the negative x (in m/s) is A) 0 Q5) Vectors A What is the arx-axis? A) 25° D) 55° Q6) A block frictionless su	B) 4 A and B are represented agle of their resultant w B) 103° E) 112° of mass $M = 6.0$ kg is in rface, as shown in the I	C) 2 as shown in the figure. Ith respect to the positive C) 77° c) 77° a contact with another billingure. The force $F = 3$	D) 5 B = 4 lock of mass $m = 4.0 \text{ kg}$ N is applied as show	E) 6 A = 3 on a

$$\begin{array}{ll}
\varphi 1 & x_{1} - x_{i} = v_{i}t + \frac{1}{2}at^{2} \\
-30 - 10 = 20t + \frac{1}{2}at^{2} \Rightarrow -40 = 20(6) + \frac{1}{2}a(6)^{2} \\
-160 = 18a \Rightarrow a = -8.9 \text{ m/s}^{2}
\end{array}$$

94]
$$\overline{S} = \frac{total \, distance}{total \, time} = \frac{15 \times 2}{5} = 6 \, \text{m/s}$$

95] FMFP Am For mass M: | for mass m F-P=Ma-0| P=ma-2 30/10 = 3m/s2. > 0+0 > F = (m+M)a ≥ a = From @ P = (4)(3) = 12 N $f_{R} = \frac{1-3m}{N}$ $f_{R} = 0$ $f_{R} = 0$ $f_{R} = 0$ Q7] ->+ WAZ = DK+BU The is the only non-conservative force that does work in this case > frd cos 180° = 1 m (vf - v, 1) + 0 - Mx mgd = \frac{1}{2}m(0-25) => d = \frac{125}{200} = 6.4 m $f_{R} = m_{1} + m_{2}$ $m_{1}g$ m_{2} Q8 + m2g-T= M2a - 0 >+ T-fR = M, a - 2 (1)+(2) = mrg - fk = (m,+mr) a $a = \frac{m_2 g - f_k}{m_1 + m_2} = \frac{2g - \mu_k m_1 g}{m_1 + m_2}$

a = 2.6 m/s2.

99] statronary
$$M \Rightarrow$$

$$Mg \leq f_{s,max}$$

$$Mg \leq M_{s}N = M_{s}F$$

$$Mg \leq M_{s}F \Rightarrow F \geq \frac{Mg}{M_{s}}$$

$$F = \frac{Mg}{M_{s}}$$

$$Mg = \frac{3\times 9.8}{0.2} = 147 \text{ Newton}.$$

Q10] There are Two nonconservative forces in this example that do work fx and P.

$$W_{total} = DK$$

$$W_{f_k} + W_p = \frac{1}{2} m(V_p^2 - V_i^2)$$

$$W_{f_k} + (PCB30)(8)CB(6) = \frac{1}{2}(20)(2.6^2 - 0.5^2)$$

$$W_{f_k} + \frac{160 \times \sqrt{3}}{2} \times 8 = 10(2.6^2 - 0.5^2)$$

$$W_{f_k} + \frac{160 \times \sqrt{3}}{2} \times 8 = 10(2.6^2 - 0.5^2)$$

$$W_{f_k} = 65.1 - 1108 \simeq -1043 \text{ J}$$

$$W_{f_k} = 65.1 - 1108 \simeq -1043 \text{ J}$$

Note Since no statement says that the acceleration is constant = cannot use of motion to solve this question.

Time in Q1 is 8 s

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Answer	E	C	A	В	D	C	D	В	A	C

Time in Q1 is 6 s

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Answer	A	D	A	E	В	A	A	D	E	В