University of Jordan

Math. Stat. (Math.131)

Math. Dept.

HW Set #2

<u>Ouestion 1</u>: Let X: B(5, 1/3), Y: Poisson (3). Assume that X and Y are independent. Find

(a) $E(X^2)$ (b) Var(3Y - 2) (c) P(Y = 4) (d) P(X = 0)

Question 2: Let X ~ B(100, 0.02), using Poisson approximation, find (a) P(X > 3) (b) P(X = 2) (c) $P(2.5 \le X \le 2.98)$

<u>Ouestion 3</u>: Three balls are drawn without replacement from a box containing 2 red and 2 black balls. Let X be the number of red balls. Compute mean and Std. of X.

<u>Question 4</u>: Let X: N(10, 4) and Y: N(8, 16). Assume that X and Y are independent random variables. Find

(a) The 90^{th} percentile of X	(b) $E(3 X^2 - 2XY + 7)$
(c) Corr(X, Y)	(d) $P(X \ge 11 Y \le 7)$

Ouestion 5:

(a) Let X ~ B(100, 0.1). Find P($7 \le X < 11$)

(b) Let X be binomial random variable with mean 10 and Std. 3. Find P(X > 2).

<u>**Question 6:**</u> The grades in a general exam are normally distributed with mean 75 and Std. 8

- (a) What is the proportion of grades that exceed 83?
- (b) If four grades are selected at random, what is the probability that at least one of them will be more than 83?
- (c) If 50 grades are selected at random, what is the probability that at least 7 of them will be more than 83?

Question 7: The weights of male students are normally distributed with mean 65 Kgs and Std. 4 Kgs, while the weights of female students are normally distributed with mean 60 Kgs and Std. 3 Kgs. If one male and one female are selected at random, what is the probability that their total weight will be more than 130 Kgs?

<u>Ouestion 8</u>: Let X ~ N(50, 100), Y ~ t(15) and W ~ χ^2_{10} . Find (a) 80th percentile of X (b) 10th percentile of Y (c) 90th percentile of W

Question 9: Let X_1, X_2, \ldots, X_{12} be a random sample from N(60, σ^2), such that $S^2 = 9$. Find c such that P($\overline{X} \le c$) = 0.90.

Question 10: Let X₁, X₂, ..., X₆ be a random sample from N(μ , $\sigma^2 = 9$). If S² is the sample variance, find P(S² < 16.63).