University of Jordan

Math. Stat. (Math.131)

Math. Dept.

HW Set #3

Question 1: Find the 95th and the 5th percentiles of

- (a) N(60, 25)
- (b) t-distribution with 8 degrees of freedom (c) χ_{10}^2

Question 2: Define the following terms:

- (a) standard error of an estimator
- (b) unbiased estimator
- (c) level of significance of a test
- (d) probability of type II test

(e) critical region

(f) $(1-\alpha)100\%$ C. I.

(g) p-value

Question 3: It is required to estimate θ . Find the required sample size to be 95% sure that your estimator is within ε from θ if

(a)
$$\theta = \mu$$
, $\varepsilon = 2$, and $\sigma = 3$

(b)
$$\theta = p$$
, $\varepsilon = 0.02$.

Question 4: Answer with True or False (justify)

If H₀: $\theta = \theta_0$ is rejected at $\alpha = 0.01$ then

- (a) H_0 may be rejected for some $\alpha < 0.1$
- (b) H_0 is rejected for all $\alpha < 0.1$
- (c) H_0 may be rejected for some $\alpha > 0.1$
- (d) H_0 is rejected for all $\alpha > 0.1$
- (e) H_0 is accepted for all $\alpha < 0.1$
- (f) H_0 may be accepted for some $\alpha < 0.1$
- (g) H₀ is accepted for all $\alpha > 0.1$
- (h) H_0 may be accepted for $\alpha > 0.1$
- (h) A 90% C. I. for θ should not contain θ_0 if H_1 : $\theta \neq \theta_0$

Question 5: Let $X_1, ..., X_{15}$ be a r.s. from B(1, p). Let $Y = \sum_{i=1}^{15} X_i$. Assume that H_0 :

p=0.7 is rejected vs. H_1 : p < 0.7 if Y \leq 11. Find

- (a) The level of significance α
- (b) β when p = 0.5.

Question 6: Let $X_1, ..., X_{15}$ be a r.s. from $N(\mu, \sigma^2)$ such that $\overline{X} = 60$ and $\sigma = 3$. Find the p-value in each of the following cases:

(a) H₀:
$$\mu$$
=62 vs. H1: $\mu \neq$ 62

(b)
$$H_0$$
: $\mu = 62$ vs. H1: $\mu < 62$

Question 7: Two samples from two independent populations gave the following

	Group I	Group II
n	36	64
\overline{X}	60	65
S^2	5	4
^	0.2	0.3
p		

- (a) Find 95% C. I. for μ_I , p_I , σ_{II}^2 , μ_{I} μ_{II} , p_{I} p_{II}
- (b) Test H₀: $\mu_I = 62$ vs. H₁: $\mu_I < 62$
- (c) Test H₀: $p_I = 0.15$ vs. H₁: $p_I > .15$
- (d) Test H₀: $\mu_I = \mu_{II}$ vs. H₁: $\mu_I \neq \mu_{II}$
- (e) Test H₀: $p_I = p_{II}$ vs. H₁: $p_I < p_{II}$
- (f) Test H₀: $\sigma_I^2 = 4$ vs. H₁: $\sigma_I^2 > 4$