University of Jordan Math. Stat. (Math.131) Math. Dept. HW Set #3 **Question 1:** Find the 95th and the 5th percentiles of - (a) N(60, 25) - (b) t-distribution with 8 degrees of freedom (c) χ_{10}^2 **Question 2:** Define the following terms: - (a) standard error of an estimator - (b) unbiased estimator - (c) level of significance of a test - (d) probability of type II test (e) critical region (f) $(1-\alpha)100\%$ C. I. (g) p-value **Question 3:** It is required to estimate θ . Find the required sample size to be 95% sure that your estimator is within ε from θ if (a) $$\theta = \mu$$, $\varepsilon = 2$, and $\sigma = 3$ (b) $$\theta = p$$, $\varepsilon = 0.02$. **Question 4:** Answer with True or False (justify) If H₀: $\theta = \theta_0$ is rejected at $\alpha = 0.01$ then - (a) H_0 may be rejected for some $\alpha < 0.1$ - (b) H_0 is rejected for all $\alpha < 0.1$ - (c) H_0 may be rejected for some $\alpha > 0.1$ - (d) H_0 is rejected for all $\alpha > 0.1$ - (e) H_0 is accepted for all $\alpha < 0.1$ - (f) H_0 may be accepted for some $\alpha < 0.1$ - (g) H₀ is accepted for all $\alpha > 0.1$ - (h) H_0 may be accepted for $\alpha > 0.1$ - (h) A 90% C. I. for θ should not contain θ_0 if H_1 : $\theta \neq \theta_0$ **Question 5:** Let $X_1, ..., X_{15}$ be a r.s. from B(1, p). Let $Y = \sum_{i=1}^{15} X_i$. Assume that H_0 : p=0.7 is rejected vs. H_1 : p < 0.7 if Y \leq 11. Find - (a) The level of significance α - (b) β when p = 0.5. **Question 6:** Let $X_1, ..., X_{15}$ be a r.s. from $N(\mu, \sigma^2)$ such that $\overline{X} = 60$ and $\sigma = 3$. Find the p-value in each of the following cases: (a) H₀: $$\mu$$ =62 vs. H1: $\mu \neq$ 62 (b) $$H_0$$: $\mu = 62$ vs. H1: $\mu < 62$ **Question 7:** Two samples from two independent populations gave the following | | Group I | Group II | |----------------|---------|----------| | n | 36 | 64 | | \overline{X} | 60 | 65 | | S^2 | 5 | 4 | | ^ | 0.2 | 0.3 | | p | | | - (a) Find 95% C. I. for μ_I , p_I , σ_{II}^2 , μ_{I} μ_{II} , p_{I} p_{II} - (b) Test H₀: $\mu_I = 62$ vs. H₁: $\mu_I < 62$ - (c) Test H₀: $p_I = 0.15$ vs. H₁: $p_I > .15$ - (d) Test H₀: $\mu_I = \mu_{II}$ vs. H₁: $\mu_I \neq \mu_{II}$ - (e) Test H₀: $p_I = p_{II}$ vs. H₁: $p_I < p_{II}$ - (f) Test H₀: $\sigma_I^2 = 4$ vs. H₁: $\sigma_I^2 > 4$