

Inference about 2 populations

Comparing 2 populations means

(A)Inference for large samples.

Assume $X_1, X_2, ..., X_m \sim N(\mu_1, \sigma_1^2)$ and $Y_1, Y_2, ..., Y_m \sim N(\mu_2, \sigma_2^2)$. Then

$$\overline{X} \sim N(\mu_1, \sigma_1^2/m), \ \overline{Y} \sim N(\mu_2, \sigma_2^2/n)$$

Consequently,

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \sim N(0, 1)$$

(I) $100(1-\alpha)\%$ C.I. for $\mu_1 - \mu_2$ is

$$(\overline{X} - \overline{Y}) \pm z_{1-\alpha/2} \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}$$

Testing about $\mu_1 - \mu_2$

(II) Testing Null hypothesis: $H_0: \mu_1 - \mu_2 = 0$

Alternative hypothesis: $H_1: \mu_1 - \mu_2 > 0(\mu_1 - \mu_2 < 0)$ or $H_1: \mu_1 - \mu_2 \neq 0$.

Test Statistic:

$$Z = \frac{(\overline{X} - \overline{Y}) - 0}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}} \sim N(0, 1)$$

Rejection Region for one-sided hypotheses:

$$Z > z_{1-\alpha} \ (Z < -z_{1-\alpha})$$

Rejection Region for two-sided hypotheses:

$$Z > z_{1-\alpha/2}$$
 or $Z < -z_{1-\alpha/2}$.

 $\mu_1 - \mu_2$

Example: To compare the quality of two types of tires, samples of m=n=100 tires are taken with the following information.

	Mean	Std.	Sample size
Tire A	26,000	1200	100
Tire B	25,000	1400	100

(a) Give 99% C.I. for $\mu_1 - \mu_2$

$$(26,000 - 25,000) \pm (2.58)\sqrt{\frac{1440000}{100} + \frac{1960000}{100}} = 1000 \pm (2.58)(184)$$
$$= (525.28, 1474.72)$$

(b)Do the data provide strong evidence that Tire A is different from Tire B?

$$H_0: \mu_1 - \mu_2 = 0$$
 vs. $H_1: \mu_1 - \mu_2 \neq 0$.

Since $Z = 1000/184 = 5.43 > z_{0.975} = 1.96$, we reject H_0 .

Comparing 2 means for small samples

(A)Inference for small samples.

• Assume $X_1, X_2, ..., X_m \sim N(\mu_1, \sigma_1^2)$ and $Y_1, Y_2, ..., Y_m \sim N(\mu_2, \sigma_2^2)$. Here we assume $\sigma_1^2 = \sigma_2^2 = \sigma^2$. Then the pooled estimate of σ is

$$S_p = \sqrt{\frac{(m-1)S_1^2 + (n-1)S_2^2}{m+n-2}}$$

The test statistic is

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t_{m+n-2}$$

(I) $100(1-\alpha)\%$ C.I. for $\mu_1 - \mu_2$ is

$$(\overline{X} - \overline{Y}) \pm t_{\alpha/2} S_p \sqrt{\frac{1}{m} + \frac{1}{n}}$$

Testing about $\mu_1 - \mu_2$

Alternative hypothesis: $H_1: \mu_1 - \mu_2 > 0(\mu_1 - \mu_2 < 0)$ or $H_1: \mu_1 - \mu_2 \neq 0$.

Test Statistic:

$$t = \frac{(\overline{X} - \overline{Y}) - 0}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}}$$

Rejection Region for one-sided hypotheses:

$$t > t_{1-\alpha} \ (t < -t_{1-\alpha})$$

Rejection Region for two-sided hypotheses:

$$t > t_{\alpha/2}$$
 or $t < -t_{\alpha/2}$.

Note the degrees of freedom is df = m + n - 2

 $\mu_1 - \mu_2$

Example: Given the following table:

	Mean	Std.	Sample size
Treatment 1 A	45	5	25
Treatment 2	40	4	16

(a) Give 95% C.I. for $\mu_1 - \mu_2$

The pooled estimate of σ is

$$S_p = \sqrt{\frac{(24)(25) + (15)(16)}{39}} = \sqrt{\frac{881}{39}} = 4.64$$

$$(45 - 40) \pm (2.02)(4.64)\sqrt{0.0625 + 0.04} = 5 \pm (2.02)(4.64)(0.32) = (2.22, 7.88)$$

(b) Test at $\alpha = 0.025$ that the mean of Trt.2 is less than that of Trt.1?

$$H_0: \mu_1 - \mu_2 \triangleq 0$$
 vs. $H_1: \mu_1 - \mu_2 > 0$.

Since
$$t = 5/\left[\frac{(4.64)\sqrt{\frac{1}{25} + \frac{1}{16}}}\right] = 3.38 > t_{0.025} = 2.021$$
, we reject H_0 . Math131-Principles of Statistics mraqab@ju.edu.jo – p.7/16

Paired Data

 Two samples are said to be paired when each data point in the first sample is matched and related to a unique data point of the second sample.

1_{st} reading	2_{nd} reading	difference
X_1	Y_1	$d_1 = X_1 - Y_1$
X_2	Y_2	$d_2 = X_2 - Y_2$
_	_	_
X_n	Y_n	$d_n = X_n - Y_n$

The sample mean and standard deviation of d_i 's are

$$\overline{d} = rac{\sum_{i=1}^n d_i}{n}$$
 and $S_d^2 = rac{\sum_{i=1}^n (d_i - \overline{d})^2}{n-1}$.

Cont. Paired data

- Assume the d_i 's are normally distributed with mean μ_d and variance σ_d^2 .
 - (I) $100(1 \alpha)\%$ C. I. for μ_d is

$$\overline{d} \pm t_{\alpha/2} \frac{S_d}{\sqrt{n}}$$

(II) Testing about μ_d

Test Statistic:

$$\frac{\overline{d} - \mu_d}{S_d / \sqrt{n}} \sim t_{n-1}$$

Rejection Region for one-sided hypotheses:

$$t > t_{\alpha} \ (t < -t_{\alpha})$$

Rejection Region for two-sided hypotheses:

$$t > t_{\alpha/2}$$
 or $t < -t_{\alpha/2}$.

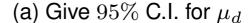
Note the degrees of freedom is df = n - 1

Example on paired data

Example: One method for assessing the effectiveness of a drug is to note concentration in blood and/or urine samples.

Person	Before medication	After medication	d_i
1	15	13	2
2	26	20	6
3	13	10	3
4	28	21	7
5	17	17	0
6	20	22	-2
7	7	5	2
8	36	30	6
9	12	7	5
10	18	11	7
mean	19.2	15.6	3.6
std.	8.63	7.78	3.098

Cont. Example



$$\overline{d} \pm t(0.025) \frac{S_d}{n} = 3.6 \pm (2.262) \frac{3.098}{\sqrt{10}} = (1.38, 5.82)$$

(b)Use $\alpha=0.01$ to test $H_0:\mu_d=0$ vs. $H_1:\mu_d\neq 0$.

Since

$$t = \frac{\overline{d}}{S_d/\sqrt{n}} = \frac{3.6}{3.09/\sqrt{10}} = 3.67 > t_{0.005} = 3.25$$

we reject H_0 .

Comparing 2 proportions

Assume X=# of successes in m trials from Pop.1 and Y=# of successes in n trials from Pop.2. Therefore

$$\hat{p_1} = \frac{X}{m}, \quad \hat{p_2} = \frac{Y}{n}.$$

- $\hat{p}_1 \hat{p}_2 \sim N(p_1 p_2, \frac{p_1 q_1}{m} + \frac{p_2 q_2}{n})$
- (I) $100(1-\alpha)\%$ C.I. for p_1-p_2 is

$$(\hat{p}_1 - \hat{p}_2) \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{m} + \frac{\hat{p}_2 \hat{q}_2}{n}}$$

The test statistic is

$$\frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{m} + \frac{1}{n}}}$$

where $\hat{p} = (X + Y)/(m + n)$ is the pooled estimate for $p = p_1 = p_2$.

$$p_1 - p_2$$

Example: Given the following table:

	Sample size	# Support space research
Republican	64	45
Democrat	100	60

(a) Give 80% C.I. for p_1-p_2 =difference in proportions of the people who are supporting the space research

$$(0.7 - 0.6) \pm (1.28) \sqrt{\frac{(0.7)(0.3)}{64} + \frac{(0.6)(0.4)}{100}} = 0.1 \pm (1.28)(0.075) = (0.004, 0.196)$$

(b)Test at $\alpha=0.01$ that the proportion of people who supporting space research from Republican is greater than that of democrat?

$$H_0: p_1 - p_2 = 0$$
 vs. $H_1: p_1 - p_2 > 0$.

The pooled estimate of common p is $\hat{p} = (45 + 60)/164 = 0.64$. Since

$$Z = \frac{(0.7 - 0.6) - 0}{0.048\sqrt{\frac{1}{64} + \frac{1}{100}}} = 1.3 \not > z_{0.99} = 2.33,$$

Comparing 2 variances

- Assume $X_1, X_2, ..., X_m \sim N(\mu_1, \sigma_1^2)$ and $Y_1, Y_2, ..., Y_m \sim N(\mu_2, \sigma_2^2)$ are independent samples. Let S_1^2 and S_2^2 be the sample variances of Pop.1 and 2, respectively.
- $(m-1)S_1^2/\sigma_1^2 \sim \chi_{m-1}^2$ and $(n-1)S_2^2/\sigma_2^2 \sim \chi_{n-1}^2$. In a consequence of that,

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(m-1, n-1)$$

where F(m-1,n-1) is Fisher distribution with degrees of freedom m-1 and n-1.

- If $F \sim F(\nu_1, \nu_2)$ then $\frac{1}{F} \sim F(\nu_2, \nu_1)$. This means that $F_{0.95}(\nu_1, \nu_2) = \frac{1}{F_{0.05}(\nu_2, \nu_1)}$
- (I) $100(1-\alpha)\%$ C.I. for σ_1^2/σ_2^2 is

$$\left(\frac{S_1^2/S_2^2}{F_{\alpha/2}(m-1,n-1)}, \frac{S_1^2/S_2^2}{F_{1-\alpha/2}(m-1,n-1)}\right)$$

Testing for 2 variances

(II) Testing about σ_1^2/σ_2^2 Testing Null hypothesis: $H_0: \sigma_1^2/\sigma_2^2=1$ Alternative hypothesis: $H_1: \sigma_1^2/\sigma_2^2>1(\sigma_1^2/\sigma_2^2<1)$ or $H_1: \sigma_1^2/\sigma_2^2\neq 1$.

Test Statistic:

$$F = \frac{S_1^2}{S_2^2}$$

Rejection Region for one-sided hypotheses:

$$F > F_{\alpha} \ (F < F_{1-\alpha})$$

Rejection Region for two-sided hypotheses:

$$F > F_{\alpha/2}$$
 or $F < F_{1-\alpha/2}$.

Note the degrees of freedom is df = (m-1, n-1)

$$\sigma_1^2/\sigma_2^2$$

Example: Given the following table:

	Sample size	Std.
Section 1	16	5
Section 2	9	3

(a) Give 90% C.I. for $\sigma_1^2/\sigma_2^2=$ ratio of the two populations variances

$$\left(\frac{25/9}{F_{0.05}(15,8)}, \frac{25/9}{F_{0.95}(15,8)}\right) = \left(\frac{2.78}{3.22}, (2.78)(3.22)\right) = (0.86, 7.34)$$

(b)Test

$$H_0: \sigma_1^2/\sigma_2^2 = 1 \text{ vs. } H_1: \sigma_1^2/\sigma_2^2 > 1.$$

$$F = \frac{25}{9} = 2.78 < F_{0.05}(15, 8) = 3.22,$$

we accept H_0 .

