

Random Variables and Probability Distribution

Definitions:

- Random Variable: A random variable is a numerically valued function defined over a sample space S.
- Discrete Random Variable: It is one that can assume a countable number of values.

Examples:

- (1) # of defective items drawn from a sample of size 10.
- (2) # of people in the waiting line in a doctor's office from a sample of size 100.
- Continuous Random Variable: It is one that can assume infinitely large number of values.

Examples:

- (1) The failure times of electric bulbs
- (2) The weights of children entering the doctor's office

Probability Distribution for Discrete R.V.'s:

$$0 \le p(x) \le 1$$
$$\sum p(x) = 1$$

Example: Tossing a coin twice. Let X= number of heads=0,1,2.

$$P(X = 0) = \frac{1}{4}$$

$$P(X = 1) = \frac{1}{2}$$

$$P(X = 2) = \frac{1}{4}.$$

X	0	1	2
p(x)	1/4	1/2	1/4

Example: Out of 5 items, 3 items are defectives. Two items are drawn at random. Let X = number of defective items chosen. That is, X = 0, 1, 2.

$$P(X=0) = \frac{\binom{3}{0}\binom{2}{2}}{\binom{5}{2}} = 0.1$$

$$P(X = 1) = \frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}} = 0.6$$

$$P(X=2) = \frac{\binom{3}{2}\binom{2}{0}}{\binom{5}{2}} = 0.3$$

X	0	1	2
p(x)	0.1	0.6	0.3

Example: Assume p=P(S)=(success)=0.4, q=P(F)=P(Failure), and X= number of drillings until the first success occurs. So X=1,2,3,...

$$P(X = 1) = P(S) = 0.4$$

$$P(X = 2) = P(FS) = (0.6)(0.4) = 0.24$$

$$P(X = 3) = P(FFS) = (0.6)(0.6)(0.4) = 0.144$$

\overline{X}	P(X)
1	0.4
2	0.24
3	0.144

Expectation and Its Properties:

\overline{X}	P(x)	xP(x)	$x^2P(x)$
0	0.1	0	0
1	0.6	0.6	0.6
2	0.3	0.6	1.2
		1.2	1.8

$$EX = \sum_{x} x P(x) = 1.2$$
, and $EX^2 = \sum_{x} x^2 P(x) = 1.8$

$$\sigma^{2} = Var(X) = E(X - \mu)^{2} = EX^{2} - \mu^{2}$$
$$= 1.8 - (1.2)^{2} = 0.36.$$

Properties on Expectation:

(i)
$$E(X + a) = E(X) + a$$

$$(ii)E(a+bX) = a + bE(X)$$

(iii)
$$E(a + bX + cX^2) = a + bE(X) + cE(X^2)$$

(iv)
$$Var(X + a) = Var(X)$$

(v)
$$Var(aX + b) = a^2 Var(X)$$

(vi)
$$Std(aX + b) = |a|Std(X)$$
.

Example: A sales person receives orders for 0, 1, 2, 3 or 4 units of products each day with probability 0.4, 0.1, 0.3, 0.1, and 0.1, respectively. His salary is 50 JD per day plus 10 JD for each unit ordered.

X	P(x)	xP(x)	$x^2P(x)$
0	0.4	0	0
1	0.1	0.1	0.1
2	0.3	0.6	1.2
3	0.1	0.3	0.9
4	0.1	0.4	1.6
		1.4	3.8

His expected salary is S = 50 + 10E(X) = 50 + 14 = 64.

Let

$$X = x_1, x_2, ..., x_k$$

$$Y = y_1, y_2, ..., y_l,$$

with

$$f(x_i, y_j) = P(X = x_i, Y = y_j)$$

Suppose there are 10 cars in a lot of which 5 are in good condition, 2 have defective transmission (DT), and the other 3 have defective steering (DS). 2 cars are chosen at random.

Define

$$X=\#$$
 of cars with DT=0,1,2 and $Y=\#$ of cars with DS=0,1,2.

$$f(0,0) = P(X=0, Y=0) = \frac{\binom{5}{2}}{\binom{10}{2}} = \frac{10}{45}$$

$$f(0,1) = P(X = 0, Y = 1) = \frac{\binom{2}{0}\binom{3}{1}\binom{5}{1}}{\binom{10}{2}} = \frac{15}{45}$$

$$f(0,2) = P(X = 0, Y = 2) = \frac{\binom{2}{0}\binom{3}{2}\binom{5}{0}}{\binom{10}{2}} = \frac{3}{45}$$

$$f(1,2) = P(X = 1, Y = 2) = 0$$

			Y		
		0	1	2	P(x)
	0	10/45	15/45	3/45	28/45
X	1	10/45	6/45	0	16/45
	2	1/45	0	0	1/45
	P(y)	21/45	21/45	3/45	1

 $P(X = 0) = \frac{28}{45}$ $P(Y = 1) = \frac{21}{45}$ $P(X > Y) = f(1,0) + f(2,0) + f(2,1) = \frac{10}{45} + \frac{1}{45} + 0 = \frac{11}{45}$

• Find the distribution of Z = X + Y.

Now Z = 0, 1, 2, 3, 4.

$$P(Z=0) = P(0,0) = \frac{10}{45}, \quad P(Z=1) = P(1,0) + P(0,1) = \frac{25}{45}$$

$$P(Z=2) = P(0,2) + P(2,0) + P(1,1) = \frac{10}{45}$$

$$P(Z=3) = P(1,2) + P(2,1) = 0, \quad P(Z=4) = P(2,2) = 0.$$

• Find the mean and Variance of X

\overline{X}	P(x)	xP(x)	$x^2P(x)$
<u> </u>	I(u)		$\frac{x \cdot I \cdot (x)}{x}$
0	28/45	0	0
1	16/45	16/45	16/45
2	1/45	2/45	4/45
		18/45	20/45

Therefore
$$EX = 18/45 = 0.4$$
, $Var(X) = (20/45) - (18/45)^2 = 0.44 - 0.16 = 0.284 \ \sigma_X = 0.53$.

Similarly,

$$EY = 27/45 = 0.6, Var(X) = (33/45) - (27/45)^2 = 0.373, \ \sigma_Y = 0.61.$$

• Covariance and Correlation Coefficient X and Y. It is a measure of association. It is defined as

$$Cov(X, Y) = E(XY) - E(X).E(Y)$$

where $E(XY) = \sum_{x,y} (x \ y) \ p(x,y)$. The correlation coefficient between X and Y is

$$Corr(X, Y) = \rho = \frac{Cov(X, Y)}{\sigma_X \ \sigma_Y}$$

Then

$$E(X Y) = (0)(0)(10/45) + (1)(1)(6/45) + (1)(2)(0) + ... + = 6/45,$$

$$Cov(X,Y) = \frac{6}{45} - \frac{18}{45} \frac{27}{45} = 0.13 - 0.24 = -0.11$$

and

Properties on Covariance and Correlation:

- $-1 \le \rho \le 1$
- Corr(aX+b, c Y+d)= Corr(X,Y) if a and c have the same signs and Corr(aX+b, c Y+d)= Corr(X,Y) if a and c have opposite signs
- $Var(X \mp Y) = Var(X) + Var(Y) \mp 2Cco(X, Y)$
- $Var(aX \mp bY + c) = a^2 Var(X) + b^2 Var(Y) \mp 2a \ b \ Cov(X, Y)$
- If X and Y are indep. with EX=0, Std(X)=2, EY=-1, Std(Y)=4, then

$$Var(X - Y) = 4 + 16 = 20$$

 $Var(0.5X + 0.5Y) = (1/4)(4) + (1/4)(16) = 1 + 4 = 5$

• If Cov(X,Y)=1, then Var(0.5X+0.5Y)=(1/4)(4)+(1/4)(16)+2(1/2)(1/2)=5.5

