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14 Abstract Urokinase plasminogen activator (uPA)—a serine
15 protease—is thought to play a central role in tumor metastasis
16 and angiogenesis and, therefore, inhibition of this enzyme
17 could be beneficial in treating cancer. Toward this end, we
18 explored the pharmacophoric space of 202 uPA inhibitors
19 using seven diverse sets of inhibitors to identify high-quality
20 pharmacophores. Subsequently, we employed genetic
21 algorithm-based quantitative structure-activity relationship
22 (QSAR) analysis as a competition arena to select the best
23 possible combination of pharmacophoric models and physi-
24 cochemical descriptors that can explain bioactivity variation
25 within the training inhibitors (r2162=0.74, F-statistic=64.30,
26 r2LOO=0.71, r

2
PRESS against 40 test inhibitors=0.79). Three

27 orthogonal pharmacophores emerged in the QSAR equation
28 suggesting the existence of at least three binding modes ac-
29 cessible to ligands within the uPA binding pocket. This con-
30 clusion was supported by receiver operating characteristic
31 (ROC) cu rv e ana l y s e s o f t h e QSAR- s e l e c t ed
32 pharmacophores. Moreover, the three pharmacophores were
33 comparable with binding interactions seen in crystallographic
34 structures of bound ligands within the uPA binding pocket.
35 We employed the resulting pharmacophoric models and asso-
36 ciated QSAR equation to screen the national cancer institute
37 (NCI) list of compounds. The captured hits were tested

38in vitro. Overall, our modeling workflow identified new low
39micromolar anti-uPA hits.

40Keywords Urokinase plasminogen activator . Ligand based
41analysis . Serine peptidase . Anticancer . Anti-inflammatory

42Introduction

43Urokinase-type plasminogen activator (uPA)

44Urokinase-type plasminogen activator (uPA) is a serine pro-
45tease that has been implicated as a key mediator of cellular
46invasion and tissue remodeling [1]. An inhibitor of uPA may
47have a therapeutic role in disease situations where uPA-driven
48degradation of extracellular matrix, or uPA-dependent cell
49migration is thought to be important including tumor growth,
50metastasis, angiogenesis and chronic wounds [2–7].
51Evidence has also been obtained to suggest that uPA, or
52plasmin produced by its action, may play a role in preventing
53healing of chronic wounds [3, 7]. Consequently, a selective
54inhibitor for uPA could have therapeutic value in cancer and
55wound healing [1, 7].
56The main focus of recent efforts towards the development
57of new uPA inhibitors concentrate on structure-based ligand
58design [8–10] and high throughput screening [11, 12]. To date,
59several uPA X-ray complexes are documented in the Protein
60Data Bank (e.g., PDB codes: 1OWD, 1OWE, 1SQO, 1SQT,
611SQA, 1CFL, 1EJN, 1OWH, 1OWK, 1OWJ, 1U6Q, 1YWH,
622OW8) with good resolution. However, although crystallo-
63graphic structures are generally considered the most reliable
64structural information for drug design purposes, they are
65limited by inadequate resolution [13] and crystallization-
66related artifacts of the ligand–protein complex [14–16]. More-
67over, crystallographic structures generally ignore structural
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68 heterogeneity related to protein anisotropic motion and dis-
69 crete conformational substrates [17].
70 The continued interest in designing new uPA inhibitors and
71 the lack of adequate ligand-based computer-aided drug dis-
72 covery efforts, which can overcome the drawbacks of
73 structure-based design, combined with the significant induced
74 fit flexibility observed for uPA [18], prompted us to explore
75 the possibility of developing ligand-based three-dimensional
76 (3D) pharmacophore(s) integrated within a self-consistent
77 quantitative structure-activity relationship (QSAR) model.
78 This approach avoids the pitfalls of structure-based tech-
79 niques; furthermore, the pharmacophore model(s) can be used
80 as 3D search queries to discover new uPA inhibitory scaffolds.
81 We previously reported the use of this innovative approach
82 towards the discovery of new inhibitory leads against glyco-
83 gen synthase kinase-3β, [19] bacterial MurF [20], protein
84 tyrosine phosphatase [21], DPP IV [22], hormone sensitive
85 lipase [23], β-secretase [24], influenza neuraminidase [25],
86 migration inhibitory factor [26], cyclin dependent kinase in-
87 hibitors (CDK1)[27], and heat shock protein 90 (Hsp90) [28].

88 Methods

89 Molecular modeling

90 Pharmacophore and QSAR modeling studies were performed
91 using the CATALYST (HYPOGEN module) [33] and
92 CERIUS2 software suites implemented in Discovery Studio
93 2.5.5 from Accelrys Inc. (San Diego, CA,, http://www.
94 accelrys.com). Structure drawing was performed employing
95 ChemDraw Ultra 7.0 (Cambridge Soft Corp. (http://www.
96 cambridgesoft.Com), Cambridge, MA).

97 Data set and conformational analysis

98 The structures of 202 uPA inhibitors (1–202 , Fig. 1, Table A
99 in the electronic supplementary material) were collected from
100 recently published literature [29–36]. Although the in vitro
101 bioactivities of the collected inhibitors were gathered from
102 separate articles, the fact that the bioactivities were expressed
103 as affinity values (K i) should minimize any discrepancies
104 resulting from variations in bioassay procedure [26]. The
105 logarithm transformation of K i (μM) values were used in
106 QSAR and pharmacophore modeling, thus linearly correlating
107 the bioactivities with binding free energy change.
108 The two-dimensional (2D) chemical structures of the in-
109 hibitors were sketched using ChemDraw Ultra and saved in
110 MDL-molfile format. Subsequently, they were imported into
111 CATALYST, converted into corresponding standard 3D struc-
112 tures and energy minimized to the closest local minimum
113 using the molecular mechanics CHARMm force field
114 implemented in CATALYST. The resulting 3D structures

115were utilized as starting conformers for CATALYST
116conformational analysis.
117The conformational space of collected each inhibitor (1–
118202 , Fig. 1, Table A under electronic supplementary material)
119was explored adopting the “best conformer generation” option
120within CATALYST [37] based on the generalized CHARMm
121force field implemented in the program. Default parameters
122were employed in the conformation generation procedure of
123training compounds and screened libraries, i.e., a conforma-
124tional ensemble was generated with an energy threshold of
12520 kcal/mol−1 from the local minimized structure at which has
126the lowest energy level and a maximum limit of 250 con-
127formers per molecule [37, 38].

128Generation and assessment of binding hypotheses

129All 202 molecules with their associated conformational
130models were grouped into a spreadsheet. The biological data
131of the inhibitors were reported with an “Uncertainty” value of
132three, which means that the actual bioactivity of a particular
133inhibitor is assumed to be situated somewhere in an interval
134ranging from one-third to three-times the reported bioactivity
135value of that inhibitor [39, 40]. Subsequently, seven structur-
136ally diverse training subsets were selected: subsets I , II , III ,
137IV, V, VI and VII shown in Table B in the electronic supple-
138mentary material. The selected training sets were utilized to
139conduct 48 modeling runs to explore the pharmacophoric
140space of uPA inhibitors. Table C of the supplementary mate-
141rial shows the training subsets and different parameters im-
142plemented for each pharmacophore exploration run. The ex-
143ploration process included altering number and type of possi-
144ble binding features (hydrogen bond acceptors, hydrogen
145bond donors, aromatic rings, ionizable groups and hydropho-
146bic features), feature spacing parameter (100 and 300 pm) and
147the maximum number of allowed features in the resulting
148pharmacophore hypotheses.
149Pharmacophore modeling employing CATALYST pro-
150ceeds through three consecutive steps: the constructive phase,
151subtractive phase and optimization phase (see CATALYST
152Modeling Algorithm under section SM-1 in Supplementary
153Materials) [37–43]. In the optimization phase, CATALYST
154attempts to minimize a cost function for each hypotheses
155consisting of three terms: Weight cost, Error cost and Config-
156uration cost (see CATALYST Cost Analysis in Assessment of
157Generated Binding Hypotheses under section SM-2 in Sup-
158plementary Materials).
159CATALYST-HYPOGEN cross-validates the resulting op-
160timal pharmacophores using the Cat-Scramble module imple-
161mented in CATALYST. This validation procedure is based on
162Fischer’s randomization test [44]. In this validation test; we
163selected a 95% confidence level, which instructs CATALYST
164to generate 19 random spreadsheets by the Cat-Scramble
165command. Subsequently, CATALYST-HYPOGEN is
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166 challenged to use these random spreadsheets to generate
167 hypotheses using exactly the same features and param-
168 eters used in generating the initial unscrambled hypoth-
169 eses. Success in generating pharmacophores of compa-
170 rable cost criteria to those produced by the original
171 unscrambled data reduces the confidence in the training

172compounds and the unscrambled original pharmacophore
173models [37, 44, 45]. Based on Fischer randomization
174criteria; all 480 pharmacophores exceeded the 95 %
175significance threshold for subsequent processing.
176Table D under Supplementary Materials shows different
177cost criteria and significance levels of representative
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178 pharmacophoric hypotheses (see pharmacophore cluster-
179 ing under QSAR modeling section).

180 QSAR modeling

181 The resulting pharmacophore models (480) were clustered into
182 45 groups utilizing the hierarchical average linkage method
183 available in CATALYST. Subsequently, the highest-ranking
184 representatives, as judged based on their significance F-values
185 (calculated from correlating their fit values against the whole
186 list of collected compounds with the corresponding molecular
187 bioactivities) were selected to represent their corresponding
188 clusters in subsequent QSAR modeling. Table D under Sup-
189 plementary Materials shows information about representative
190 pharmacophores including their pharmacophoric features, suc-
191 cess criteria and differences from corresponding null hypothe-
192 ses. The Table also shows the corresponding Cat. Scramble
193 confidence levels for each representative pharmacophore.
194 QSAR modeling commenced by selecting a subset of 162
195 compounds from the total list of inhibitors (1–202 , Fig. 1,
196 Table A under Supplementary Materials) as a training set for
197 QSARmodeling; the remaining 40 molecules (ca. 20 % of the
198 dataset) were employed as an external test subset for validat-
199 ing the QSAR models. The test molecules were selected as
200 follows: all 202 inhibitors were ranked according to their K i

201 values, and then every fifth compoundwas selected for the test
202 set starting from the high-potency end. The selected test
203 molecules should represent similar range of biological activ-
204 ities to that of the training set. The selected test inhibitors are
205 marked with asterisks in Table A under Supplementary
206 Materials.
207 The logarithm of measured K i (μM) values was used in
208 QSAR, thus correlating the data linear to the free energy
209 change. Subsequently, we implemented genetic algorithm
210 and multiple linear regression analyses to select optimal com-
211 bination of pharmacophoric models and other physicochemi-
212 cal descriptors capable of self-consistent and predictive QSAR
213 model. Section SM-3 under Supplementary Materials de-
214 scribes extensively the experimental details of QSAR model-
215 ing procedure [37, 46].

216 Addition of exclusion volumes

217 To account for the steric constrains of the binding pocket, we
218 decided to complement our QSAR-selected pharmacophore
219 models (i.e., Hypo34/2, Hypo37/3 and Hypo38/10) with ex-
220 clusion volumes employing Hip-Hop-Refine module of CAT-
221 ALYST. Hip-Hop-Refine uses inactive training compounds to
222 construct excluded volumes that resemble the steric constrains
223 of the binding pocket. It identifies spaces occupied by the
224 conformations of inactive compounds and free from active
225 ones. These regions are then filled with excluded volumes
226 [21–23, 37]. Subset VIII (in Table E under Supplementary

227Material) was used to construct exclusion spheres around
228Hypo34/2, Hypo37/3 and Hypo38/10. Section SM-4 under
229Supplementary Materials describes in details the Hip-Hop-
230Refine algorithm and settings implemented herein to decorate
231Hypo34/2, Hypo37/3 and Hypo38/10 with exclusion spheres.
232The resulting sterically refined pharmacophores, as well as
233their unrefined versions, were validated by receiver operating
234characteristic curve analysis (ROC). [47–50], Theoretical and
235experimental details of this procedure are as shown in section
236SM-5 under Supplementary Material.

237In silico screening for new uPA inhibitors

238The sterically refined versions of Hypo34/2, Hypo37/3 and
239Hypo38/10 were employed as 3D search queries to screen the
2403D flexible molecular database of the National Cancer Insti-
241tute (NCI). The screening was done employing “Best Flexible
242Database Search” option implemented within CATALYST.
243Captured hits were filtered according to Lipinski’s [51] and
244Veber’s [49] rules. Remaining hits were fitted against
245Hypo34/2, Hypo37/3 and Hypo38/10 using the “best fit”
246option within CATALYST via implementing equation (D) in
247section SM-2 under Supplementary Materials. The fit values
248together with the relevant molecular descriptors of each hit
249were substituted in the optimal QSAR equation. The highest
250ranking molecules based on QSAR predictions were acquired
251and tested in vitro.

252In vitro experimental studies

253Materials

254All chemicals used in these experiments were of reagent grade
255and obtained from commercial suppliers. NCI samples were
256kindly provided by the National Cancer Institute (http://www.
257cancer.gov/).

258Quantification of the anti-uPA bioactivities of different hits

259Bioassays were performed using the CHEMICON uPA kit for
260screening of uPA inhibitors [52]. The assay kit utilizes a
261chromogenic substrate, which is cleaved by active uPA en-
262zyme. Addition of this substrate to a uPA-containing sample
263results in a colored product, detectable by its optical density at
264405 nm. The assay was conducted as described in the uPA
265assay kit. Assay mixture (200 μL) composed of uPA (2.5 U,
2662.5 μL), chromogenic substrate (L-pyroglutamyl-glycyl-L-ar-
267ginine-p-nitroaniline hydrochloride, 20 μL, 2.5 mg/ml),
268155 μL deionized H2O (with or without inhibitor), and assay
269buffer (20 μL, pH 7.4) was mixed and incubated at 37 °C for
2702 h. The absorbance of cleaved substrate was recorded at
271405 nm. Tested hit concentrations ranged from 1 μM to
27250 μM distributed log-linearly across the concentration range,
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273 and at least two data points from each concentration were
274 collected. The IC50 value for each experiment was obtained
275 using nonlinear regression of the log(concentration) versus
276 percent inhibition values (GraphPad Prism 5.0, http://www.
277 graphpad.com). The assay conditions were validated by
278 running positive (amiloride) and negative (deionized water)
279 controls [52].

280 Results and discussion

281 Exploration of uPA pharmacophoric space

282 A total of 202 compounds were used in this study (1–202 , see
283 Fig. 1, Table A under supplementary material) [29–36]. We
284 decided to explore the pharmacophoric space of uPA inhibi-
285 tors through 48 HYPOGEN automatic runs and employing
286 seven selected training subsets: subsets I–VII in Table B
287 under supplementary material. The biological activity in the
288 training subsets spanned from 3.5 to 4.0 orders of magnitude.
289 The training compounds in these subsets were of maximal 3D
290 diversity and continuous bioactivity spread overmore than 3.5
291 logarithmic cycles [42]. CATALYST-HYPOGEN was re-
292 stricted to explore pharmacophoric models incorporating from
293 zero to one PosIon, one NegIon feature, from zero to three
294 HBA, Hbic, and RingArom features, as shown in Table C
295 under supplementary material. The input features were rea-
296 sonably selected based on visual evaluation of the training
297 compounds and comparison between the structures of potent,
298 moderate and inactive members. Furthermore, we instructed
299 the software to explore only four- and five-featured
300 pharmacophores, i.e., ignore models of lesser number of fea-
301 tures (as shown in Table C under supplementary material).
302 The reader is referred to section Generation and Assessment
303 of Binding Hypotheses in Methods and sections SM-1 and
304 SM-2 under Supplementary Materials for more details about
305 the CATALYST algorithm [38, 39, 42].
306 The resulting binding hypotheses from each automatic
307 pharmacophore modeling run were ranked automatically ac-
308 cording to their corresponding “total cost” value, which is de-
309 fined as the sum of error cost, weight cost and configuration cost
310 (see section Generation and Assessment of Binding Hypotheses
311 in Methods and section SM-2 under Supplementary Materials)
312 [37–42]. Error cost provides the highest contribution to total cost
313 and is directly related to the capacity of the particular
314 pharmacophore as 3D-QSAR model, i.e., in correlating the
315 molecular structures to the corresponding biological responses
316 [37, 39–43]. HYPOGEN also calculates the cost of the null
317 hypothesis, which presumes that there is no relationship in the
318 data and that experimental activities are distributed normally
319 about their mean. Accordingly, the greater the difference from
320 the null hypothesis cost (i.e., residual cost, Table D under Sup-
321 plementary Materials) the more likely that the hypothesis does

322not reflect a chance correlation. CATALYST implements an
323additional validation technique based on Fisher’s randomization
324test [45], namely, Cat.Scramble [37]. In this test, the biological
325data and the corresponding structures are scrambled several
326times and the software is challenged to generate pharmacophoric
327models from the randomized data. The confidence in the parent
328hypotheses (i.e., generated from unscrambled data) is lowered
329proportional to the number of times the software succeeds in
330generating binding hypotheses from scrambled data of apparent-
331ly better cost criteria than the parent hypotheses (see
332section Generation and Assessment of Binding Hypotheses in
333Methods) [37, 39–43].
334Eventually, 480 pharmacophore models emerged from 48
335automatic HYPOGEN runs, all of which exhibited Fisher
336randomization confidence levels ≥95 %. These successful
337models were clustered and the best representatives (45
338models, see section Generation and Assessment of Binding
339Hypotheses underMethods and Table D under Supplementary
340Materials) were used in subsequent QSAR modeling.
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Fig. 2 Experimental versus a fitted (162 training compounds,
r2LOO=0.71), and b predicted (40 test compounds, r2PRESS=0.79) bio-
activities calculated from the best quantitative structure-activity relation-
ship (QSAR) model Eq. (1). Solid lines Regression lines for fitted and
predicted bioactivities of training and test compounds, respectively; dot-
ted lines 1.0 log point error margins
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341 Interestingly, the representative models shared comparable
342 features and acceptable statistical success criteria.
343 The emergence of several statistically comparable
344 pharmacophore models suggests the ability of uPA ligands
345 to assume multiple pharmacophoric binding modes within the
346 binding pocket. Therefore, it is quite challenging to select any
347 particular pharmacophore hypothesis as a sole representative
348 of the binding process.

349 QSAR modeling

350 Despite the excellent value of pharmacophoric hypotheses in
351 probing ligand–macromolecule recognition and as 3D search
352 queries to search for new biologically interesting scaffolds,
353 their predictive value as 3D-QSAR models is generally ham-
354 pered by steric shielding and bioactivity-enhancing or reducing
355 auxiliary binding groups (e.g., the biological effects of
356 electron-donating and withdrawing substitutions) [19–28].
357 Moreover, our pharmacophore exploration of uPA inhibitors
358 furnished hundreds of binding hypotheses of comparable suc-
359 cess criteria, which makes it very hard to select any particular
360 pharmacophore as sole representative of ligand binding within
361 uPA. Accordingly, we were prompted to employ classical
362 QSAR analysis to search for the best combination of
363 pharmacophore(s) and other 2D descriptors capable of
364 explaining bioactivity variation across the whole list of

365collected inhibitors (1–202 , Fig. 1, Table A). That is, we
366employed GFA-based QSAR as a competition arena to select
367the best pharmacophore(s), i.e., among the resulting population
368of binding models, and supplement it (them) with 2D descrip-
369tors to correct for the weaknesses of pharmacophore models
370(steric shielding and bioactivity-enhancing or reducing auxil-
371iary binding groups). We employed a genetic function approx-
372imation and multiple linear regression QSAR (GFA-MLR-
373QSAR) analysis to search for an optimal QSAR equation(s).
374The fit values obtained by mapping representative hypoth-
375eses (45 models) against collected uPA inhibitors (1–202 ,
376Fig. 1, Table A) were enrolled, together with around 100 other
377physicochemical descriptors, as independent variables in
378GFA-MLR-QSAR analysis [19–28, 45, 54]. We randomly
379selected 40 molecules (marked with asterisks in
380Table A under Supplementary Materials) and employed
381them as external test molecules for validating the QSAR
382models (r 2PRESS). Additionally, all QSAR models were
383cross-validated automatically using the leave-one-out
384(LOO) cross-validation (see sections QSAR Modeling
385under Methods and section SM-3 under Supplementary
386Materials). [46, 54].
387Equation (1) shows the details of the optimal QSARmodel.
388Figure 2 shows the corresponding scatter plots of experimen-
389tal versus estimated bioactivities for the training and testing
390inhibitors.

t1:1 Table 1 Pharmacophoric features and corresponding weights, tolerances and 3D coordinates of Hypo34/2, Hypo37/3 and Hypo38/10. HBA Hydrogen
bond acceptors, RingArom aromatic rings, Hbic hydrophobic features

t1:2 Model Definition Chemical features

t1:3 HBA HBA RingArom Hbic

t1:4 Hypo34/2a Weights 2.18 2.18 2.18 2.18

t1:5 Tolerances 1.60 2.20 1.60 2.20 1.60 1.60 1.60

t1:6 Coordinates X −5.14 −4.564 4.119 5.854 −0.9117 0.626 −0.8532
t1:7 Y −3.338 −0.398 0.129 −1.018 −0.7359 −2.904 3.994

t1:8 Z 0.604 0.4555 −2.117 4.278 −1.906 −0.719 0.5818

t1:9 HBA HBA RingArom Hbic

t1:10 Hypo37/3b Weights 1.806 1.806 1.806 1.806

t1:11 Tolerances 1.60 2.20 1.60 1.60 1.60 1.60 1.60

t1:12 Coordinates X −0.0.51 −0.662 −0.546 −0.330 0.294 1.735 −2.706
t1:13 Y 4.744 5.735 −0.0448 −0.7208 −4.394 2.561 −1.0022
t1:14 Z 0.4635 −2.364 −0.1923 2.7225 −4.946 −6.178 −0.4202
t1:15 HBA HBA RingArom Hbic

t1:16 Hypo38/10b Weights 1.29 1.29 1.29 1.29 1.29

t1:17 Tolerances 1.6 2.2 1.6 1.60 1.6 1.6 1.6

t1:18 Coordinates X 4.479 −0.821 −1.209 −2.949 3.058 4.221 4.573

t1:19 Y 8.359 −9.341 −14.949 −13.368 17.378 12.374 4.838

t1:20 Z −1.982 4.907 4.779 2.915 −4.1832 −2.548 −1.419

aHypo34/2: the 2nd pharmacophore hypothesis generated in the 34st HYPOGEN run (Table D under Supplementary Material)
b Hypo37/3: the 3th pharmacophore hypothesis generated in the 37th HYPOGEN run (Table D under Supplementary Material)
b Hypo38/10: the 10th pharmacophore hypothesis generated in the 38th HYPOGEN run (Table D under Supplementary Material)
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r2PRESS−test ¼ 0:79; r2m training ¼ 0:70;

Δr2m training ¼ 0:021;Q2
F1 ¼ 0:76;cR2

P ¼ 0:72……………:

ð1Þ

399400401 where r2training is the correlation coefficient against 162 train-
402 ing compounds, Fstatistic is Fisher significance criteria, r

2
LOO is

403 the leave-one-out correlation coefficient, and r2PRESS-test is the
404 predictive r2 determined for the 40 test compounds [45, 54].
405 r2m and Δrm

2 are the average and delta rm
2 values. Both are

(A) (B) (C)

(D) (E) (F)
Fig. 3 Pharmacophoric features of a Hypo34/2, b Hypo37/3 and
c Hypo38/10. Pink vectored spheres Hydrogen bond doner (HBD)
features, blue spheres hydrophobic features (Hbic), vectored or-
ange spheres aromatic rings (RingArom), green vectored spheres

hydrogen bond acceptors (HBA), red spheres positive ionizable
features (PosIon). d–f Sterically refined versions of Hypo34/2
(d ), Hypo37/3 (e ), and Hypo38/10 (f ). Gray spheres Exclusion
volumes

t2:1Table 2 Receiver operating characteristic (ROC) curve analysis criteria
for quantitative structure-activity relationship (QSAR)-selected
pharmacophores and their sterically refined versions. AUC Area under
the curve, ACC overall accuracy, SPC overall specificity, TPR overall
true positive rate, FNR overall false negative rat

t2:2Pharmacophore model ROC–AUC ACC SPC TPR FNR

t2:3Hypo34/2 0.75 0.97 0.98 0.77 0.02

t2:4Hypo37/3 0.83 0.97 0.98 0.92 0.02

t2:5Hypo38/10 0.99 0.97 1.00 0.13 0.003

t2:6Refined Hypo34/2 0.94 0.97 0.99 0.55 0.014

t2:7Refined Hypo37/3 0.93 0.97 0.98 0.76 0.02

t2:8Refined Hypo38/10 1.00 0.97 1.00 0.08 0.002

J Mol Model

JrnlID 894_ArtID 2056_Proof# 1 - 20/11/2013



AUTHOR'S PROOF!

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

406 recently developed metrics that test the internal and external
407 predictive capacities of a QSAR model extensively through

408establishing the proximity between predicted and observed
409response data among 162 training compounds. QSARmodels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FALSE POSITIVE RATE
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FALSE POSITIVE RATE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FALSE POSITIVE RATE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FALSE POSITIVE RATE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FALSE POSITIVE RATE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

R
U

E
 P

O
S

IT
IV

E
 R

A
T

E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

RECEIVER OPERATING CHARACTERISTIC (ROC) RECEIVER OPERATING CHARACTERISTIC (ROC)

RECEIVER OPERATING CHARACTERISTIC (ROC) RECEIVER OPERATING CHARACTERISTIC (ROC)

RECEIVER OPERATING CHARACTERISTIC (ROC) RECEIVER OPERATING CHARACTERISTIC (ROC)

(A) (B)

(C) (D)

(E) (F)

Fig. 4 Receiver operating characteristic (ROC) curves of a Hypo34/2, b sterically refined Hypo34/2, c Hypo 37/3, d sterically refined Hypo37/3, e
Hypo38/10, f sterically refined Hypo38/10
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410 of r2m > 0.5 and Δrm
2 < 0.2 are considered predictive and

411 reliable [61, 62]. QF1
2 is a prediction metric proposed by Shi

412 et al. [63] and calculated using the external testing list (40
413 compounds). To further establish the statistical significance of
414 the QSAR model we performed Y randomization tests by
415 randomly shuffling the dependent variable 100 times while
416 keeping the independent variables as it is. cRP

2 is a metric
417 derived from the difference between r training

2 and average

418r training
2 of random models. cR P

2 should be >0.50 for
419passing this test [66]. Based on these metrics, as well
420as others, QSAR Eq. (1) was found to pass Golbraikh
421and Tropsha criteria [64, 65].
422The reader is refered to the Supplementary Materials
423(section SM-6 and Table J) to evaluate the significance
424of the QSAR model through extensive list of validation
425techniques.

NH2
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O

N
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S OO

H2N

HN O
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NHH2N

HN NH2
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Fig. 5 a Mapping of compound 148 (K i=0.63 μM, Table A under
Supplementary Materials) against Hypo34/2. b Co-crystallized complex
of 148 within uPA (PDB code: 1SQT, resolution=1.90 Å). c Chemical
structure of 148 . d Mapping of compound 158 (K i=0.0006 μM, Table A
under Supplementary Materials) against Hypo37/3. e Co-crystallized

complex of 158 within uPA (PDB code: 1SQA, resolution=2.0 Å). f
Chemical structure of 158 . g Mapping of compound 142 against Hy-
po38/10. h Co-crystallized complex of 142 within uPA (PDB code:
1OWE, resolution=1.6 Å). i chemical structure of 142
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426 Hypo34/2, Hypo37/3 and Hypo38/10 (Table 1) represent
427 the fit values of the training compounds against these
428 pharmacophores (shown in Fig. 2) as calculated from equation
429 (D) in Supplementary Materials [33]. dsN_Count ,
430 dsN_Sum , dO_Sum are electrotopological state indices re-
431 lated to the number of imine nitrogen (dsN_Count and
432 dsN_Sum) and ether oxygen atoms (dO_Sum) in training
433 molecules [46]. Num_RotaTable Bonds is the number of
434 rotatable bonds defined as any single non-ring bond, bonded
435 to a nonterminal heavy (i.e., non-hydrogen) atom. Amide C–
436 N bonds are not considered because of their high rotational
437 energy barrier [46]. Table H and Table I show the values
438 molecular descriptors of QSAR Eq. (1) as calculated for
439 training and testing compounds, respectively.
440 Emergence of three reasonably orthogonal pharmacophoric
441 models, i.e., Hypo34/2, Hypo37/3 and Hypo38/10 (Table G
442 under Supplementary Material shows their cross-correlation
443 coefficient) in Eq. (1) suggests that they represent three com-
444 plementary binding modes accessible to ligands within the
445 binding pocket of uPA. Similar conclusions were reached
446 about the binding pockets of other targets based on QSAR
447 analysis [19–28]. Figure 3 shows Hypo34/2, Hypo37/3 and
448 Hypo38/10. The X, Y, and Z coordinates of the three
449 pharmacophores are illustrated in Table 1.
450 Interestingly, the regression slopes of the three
451 pharmacophore models suggest they make mediocre but rath-
452 er equivalent contributions to bioactivity. Nevertheless, these
453 models illustrated excellent abilities in separating active com-
454 pounds from inactive decoys in ROC analysis [47–49, 55].
455 Table 2 and Fig. 4 show the ROC results of our QSAR-
456 selected pharmacophores (see SM-5 Receiver Operating
457 Characteristic Curve Analysis under Supplementary Materials
458 for more details).
459 To correlate the binding features in Hypo34/2, Hypo37/3
460 and Hypo38/10 with ligand-receptor binding interactions an-
461 choring inhibitors into the binding pocket of uPA, we com-
462 pared the pharmacophoric features of Hypo34/2, Hypo37/3
463 and Hypo38/10 with the way in which they map three co-
464 crystallized ligands (148 , 158 and 142 ) within uPA (PDB
465 codes: 1SQA, 1SQT and 1OWE) [34, 57] as shown in Fig. 5.
466 Figure 5a,d,g compares how training compounds 148 , 158

467and 142 (Table A under Supplementary Materials) map
468Hypo34/2, Hypo37/3 and Hypo38/10 with the way these
469ligands bind within uPA’s binding pocket (PDB code: 1SQT,
4701SQA and 1OWE, respectively).
471From Fig. 5a and b, mapping the sulfonyl oxygen of 148
472against a HBA in Hypo34/2 corresponds clearly to hydrogen
473bonding interaction connecting the same sulfone group with
474the amidic NH and OH of Gln194 and Ser144, respectively.
475Similarly, π-stacking interactions anchoring the pyrazole aro-
476matic ring of 148 against the disulfide bridge of Cys221 and
477Cys193 seem to correspond to fitting the same pyrazole ring
478against the aromatic ring (RingArom) feature in Hypo34/2.
479Furthermore, fitting the terminal amidine group of 148 against
480the hydrogen bond acceptor (HBA) feature in Hypo34/2,
481correlates with hydrogen-bonding interactions connecting
482the amidino group with the carboxylate residues of Asp191.
483Finally, the fact that the naphthalene linker reside within a
484hydrophobic pocket comprised of Cys193, Trp217 and His45
485correspond to fitting this group against this hydrophobic fea-
486ture (Hbic) in Hypo34/2.
487Figure 5d and e compare the co-crystallized pose of 158 in
488uPA (PDB code: 1SQA) with the way it maps Hypo37/3.
489Mapping the heterocyclic nitrogen atom of the pyrimidinyl
490ring against HBA features in Hypo37/3 corresponds to
491hydrogen-bonding interaction connecting this nitrogen to the
492peptidic NH of Gly234 (bonded to Arg233). Similarly, fitting
493the terminal benzylamine aromatic ring of 158 against the
494RingArom feature in Hypo37/3 agrees with π-stacking inter-
495actions resulting from inserting the particular aromatic ring
496between the imidazole rings of His54 and His106.
497Similarly, mapping the naphthyl residue of 158 against
498Hbic and RingArom features in Hypo37/3 correlates with
499hydrophobic proximity between this substituent and hydro-
500phobic side chains of Gly232, Cys207 and Cys235, and π-
501stacking with peptidic amides of Gln208 and Trp231.
502Finally, Fig. 5g and h compare the co-crystallized pose of
503142 in uPA (PDB code: 1OWE) with the way Hypo38/10
504maps 142 . Mapping the amide NH of 142 against HBD
505feature in Hypo38/10 corresponds to hydrogen-bonding inter-
506actions connecting this nitrogen to the carbonyl oxygen of
507Ser230 via a bridging water molecule. Moreover, fitting the

t3:1 Table 3 Numbers of captured hits by sterically refined versions of Hypo34/2, Hypo37/3 and Hypo38/10

t3:2 Pharmacophore models

t3:3 3D Databasea Post screening filteringb Sterically-refined Hypo34/2 Sterically-refined Hypo37/3 Sterically-refined Hypo38/10

t3:4 NCI Before 8633 7771 145

t3:5 After 3402 5531 113

aNational Cancer Institute list of available compounds (238,819 structures)
b Using Lipinski’s [51] and Veber’s [49] rules
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508 naphthalene aromatic system of 142 against RingArom and
509 Hbic features in Hypo38/10 agrees with π-stacking this ring

510system against the amidic backbone of Cys207 and Trp231
511and its close proximity to the hydrophobic linker of Gln208.
512Additionally, mapping the terminal anilide ring of 142 against
513Hbic feature in Hypo38/10 agrees with stacking this ring
514between aromatic rings of His106 and His54. Finally, map-
515ping the amidine of 142 against PosIon feature in Hypo38/10
516corresponds to ionic attraction connecting this positive group
517with the carboxylate side chain of Asp205.

518Steric refinement, virtual screening and in vitro validation

519Pharmacophores serve as useful 3D QSAR models and 3D
520search queries; however, they lack the steric constrains neces-
521sary to define the size of the binding pocket. This liability
522renders pharmacophoric models rather promiscuous in some
523cases [25]. Therefore, we decided to complement the optimal
524pharmacophores with exclusion spheres employing the Hip-
525Hop-Refine module implemented within CATALYST [37].
526Excluded volumes resemble sterically inaccessible regions
527within the binding site (see section SM-4: Hip-Hop-Refine

(A) (B)

(C) (D)
Fig. 7 a , b , c and d show Hypo37/3 fitted against hits 203 , 204 , 205
and 206 , respectively

(A) (B)

(C) (D)
Fig. 6 a , b , c and d show Hypo34/2 fitted against active hits 203 , 204 ,
205 and 206 , respectively

t4:1 Table 4 Predicted and experimental bioactivities of high-ranking hit
molecules

t4:2 Hitsa Nameb Experimental % inhibition

t4:3 at 10 μMc IC50 (μM)d

t4:4 203 135,766 63 6.3

t4:5 204 666,712 57 9.0

t4:6 205 4,367 55 11.3

t4:7 206 144,205 41 28.4

t4:8 237e Amiloride 42 12.3

a Chemical structures shown in Fig. 9
bNCI number
c Experimental percentage of inhibition determined at 10 μM inhibitor
concentrations
d IC50 values experimentally determined for most active hits
e Reported Amiloride uPA inhibitory IC50=7.0 μM. [58] Each values
represents the average of duplicate measurements
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528 algorithm and employed settings under Supplementary
529 Material for more details) [56].
530 We selected a diverse training subset for Hip-Hop-Refine
531 modeling (subset VIII in Table E under supplementary ma-
532 terial). The training compounds were selected in such a way
533 that the bioactivities of weakly active compounds are explain-
534 able by steric clashes within the binding pocket.

535We assessed the success of steric refinement experiments
536through ROC analysis of the sterically refined pharmacophore
537versions. Table 2 shows the ROC results of the refined
538pharmacophores compared to their unrefined counterparts.
539Clearly, steric refinement improved the classification power
540of the three pharmacophores. This effect was particularly
541evident with Hypo34/2 and Hypo37/3, which had their
542ROC areas under the curve (AUCs) increased from
54375 % and 83 % to 94 % and 93 %, respectively.
544However, the effect of steric refinement on the efficien-
545cy of Hypo38/10 was less drastic. This is not surprising,
546since this pharmacophore is inherently of superior clas-
547sification power due to the presence of a PosIon fea-
548tures among its binding features.
549Sterically refined Hypo34/2 (Fig. 3d), Hypo37/3
550(Fig. 3e) and Hypo38/10 (Fig. 3f) were employed as
5513D search queries against the National Cancer Institute
552list of compounds (NCI, 238,819 structures). Table 3
553summarizes the numbers of captured hits by sterically
554refined versions of the pharmacophores. Subsequently, cap-
555tured hits were filtered based on Lipinski’s and Veber’s rules,
556[50, 51]. The remaining hits were fitted against Hypo34/2,
557Hypo37/3 and Hypo38/10 and their fit values, together with
558other relevant molecular descriptors, were substituted in
559QSAR Eq. (1) to predict their anti-uPA bioactivities. The
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Fig. 9 Chemical structure of the
most active hits
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Fig. 8 a and b show Hypo38/10 fitted against active hits 203 and 204 ,
respectively
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560 highest-ranking hits were evaluated in vitro against human
561 uPA [52]. Figure 9 and Table 4 shows the most active hits,
562 while Table F under supplementary material shows other less
563 active hits. Figures 6, 7 and 8 show how the most potent hits
564 203, 204, 205 and 206 map against Hypo34/2, Hypo37/3 and
565 Hypo38/10.
566 Interestingly, although three of our hits shared related
567 chemical functionalities with known anti-uPA com-
568 pounds, e.g., guanidines, amidines and sulfonamides
569 (i.e., 203 , 205 and 206 , Fig. 9), one of the hits, i.e.,
570 204 (IC50=9.0 μM, Table 4 and Fig. 9) is completely
571 novel and represents a new class of uPA inhibitors that
572 can be potentially optimized into interesting new drug
573 molecules. It should be mentioned that the absence of
574 guanidine and amidine groups from 204 should enhance
575 the bioavailability of this class of anti-uPA agents.

576 Conclusions

577 uPA inhibitors are currently considered as potential
578 treatments for cancer. The pharmacophoric space of
579 uPA inhibitors was explored via seven diverse sets of
580 inhibitors and using CATALYST-HYPOGEN to identify
581 high quality binding model(s). Subsequently, genetic
582 algorithm and multiple linear regression analysis were
583 employed to access optimal QSAR model capable of
584 explaining anti-uPA bioactivity variation across 202 col-
585 lected uPA inhibitors. Three pharmacophoric models
586 emerged in the QSAR equation suggesting the existence
587 of more than one binding modes accessible to ligands
588 within uPA binding pocket. The QSAR equation and the
589 associated pharmacophoric models were validated exper-
590 imentally by the identification of several uPA inhibitors
591 retrieved via in silico screening, out of which three NCI
592 hits illustrated superior potencies over the standard uPA
593 inhibitor amiloride. Our results suggest that the combi-
594 nation of pharmacophoric exploration and QSAR analy-
595 ses can be useful tool for finding new diverse uPA
596 inhibitors.
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