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Introduction

Dipeptidyl peptidase IV (DPP IV) is a multifunctional protein
engaged in many physiological processes. It functions as bind-
ing protein, receptor, and proteolytic enzyme. It is a serine
peptidase belonging to the S9b protein family.[1] DPP IV exists
in two forms: a soluble homodimer and ubiquitous type II in-
tegral plasma membrane glycoprotein.[2–6] It has a strong corre-
lation with many diseases such as diabetes, obesity, and tumor
progression, making it an attractive target in drug discoveryACHTUNGTRENNUNGresearch.[7–12]

DPP IV degrades endogenous peptides by cleaving the pe-
nultimate (N-terminal) proline or alanine. It cleaves several bio-
active peptides, for example, growth hormone releasing hor-
mone and substance P.[13, 14] However, its most important sub-
strates are incretins : glucagonlike peptide 1 (GLP-1) and glu-
cose-dependent insulinotopic polypeptide (GIP). GLP-1 is re-
leased from intestinal l-cells in response to meals.[15] It
stimulates insulin biosynthesis and secretion, reduces glucagon
release, slows gastric emptying, reduces appetite, and stimu-
lates regeneration and differentiation of islet b-cells.[16–18] On
the other hand, GIP is produced by the duodenal K-cells and is
extensively involved in glucose metabolism by enhancing insu-
lin secretion.[19] Both peptides have very short half-livesACHTUNGTRENNUNGbecause of their rapid degradation by DPP IV (approximately
two minutes).[20, 21] Therefore, inhibiting DPP IV should promote
the hypo ACHTUNGTRENNUNGglycemic effects of GLP-1 and GIP. In fact, DPP IV in-
hibitors have been shown to reduce postprandial hyperglyce-
mia.[22] Controlling postprandial glucose excursions is currently
considered an essential objective for managing type IIACHTUNGTRENNUNGdiabetes.[22]

Various crystallographic studies on DPP IV have uncovered
features involved in its ligand binding and enzymatic catalysis,
most notably, the catalytic triad Ser630-Asp708-His740, the
oxyanion hole Tyr 631-Tyr 547, the hydrophobic S1 pocket
Tyr 631-Val 656-Trp 659-Tyr 662-Tyr 666-Val 711, the P2 region
Arg 125-Asn 710, and the N-terminal recognition region
Glu 205-Glu 206-Tyr 662.[23, 24]

Many research groups were, and still are, involved in the dis-
covery and optimization of new DPP IV inhibitors as leads for
new hypo ACHTUNGTRENNUNGglycemic therapeutic agents for the treatment of
type II diabetes.[25–29] These efforts culminated in the discovery
and optimization of a number of reversible and irreversible
DPP IV inhibitors, some of which are under clinical evaluation
(for example, NVP-DPP728, Vildagliptin, P93/01).[30–34] In fact
one of the potent inhibitors, MK-0431 (Sitagliptin), has been re-
cently approved by the FDA for treating type II diabetes.[35]

Clinically useful DPP IV inhibitors have several potential advan-
tages over classical anti ACHTUNGTRENNUNGdiabetic therapies, including: their
adaptability for oral administration in a once-per-day dosing
regimen,[25] being less prone to causing dangerous hypo-ACHTUNGTRENNUNGglycemia, and being able to promote regeneration and differ-
entiation of b-cells.[36–38]
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Dipeptidyl peptidase IV (DPP IV) deactivates the natural hypo-ACHTUNGTRENNUNGglycemic incretin hormones. Inhibition of this enzyme should re-
store glucose homeostasis in diabetic patients making it an at-
tractive target for the development of new anti ACHTUNGTRENNUNGdiabetic drugs.
With this in mind, the pharmacophoric space of DPP IV was ex-
plored using a set of 358 known inhibitors. Thereafter, genetic al-
gorithm and multiple linear regression analysis were employed to
select an optimal combination of pharmacophoric models and
physicochemical descriptors that yield selfconsistent and predic-
tive quantitative structure–activity relationships (QSAR) (r2

287 =

0.74, F-statistic = 44.5, r2
BS = 0.74, r2

LOO = 0.69, r2
PRESS against 71

external testing inhibitors = 0.51). Two orthogonal pharmaco-
phores (of cross-correlation r2 = 0.23) emerged in the QSAR equa-

tion suggesting the existence of at least two distinct binding
modes accessible to ligands within the DPP IV binding pocket.
Docking experiments supported the binding modes suggested by
QSAR/pharmacophore analyses. The validity of the QSAR equa-
tion and the associated pharmacophore models were established
by the identification of new low-micromolar anti-DPP IV leads re-
trieved by in silico screening. One of our interesting potent anti-
DPP IV hits is the fluoroquinolone gemifloxacin (IC50 = 1.12 mm).
The fact that gemifloxacin was recently reported to potently in-
hibit the prodiabetic target glycogen synthase kinase 3b ACHTUNGTRENNUNG(GSK-3b)
suggests that gemifloxacin is an excellent lead for the develop-
ment of novel dual anti ACHTUNGTRENNUNGdiabetic inhibitors against DPP IV and
GSK-3b.
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As there is a limited number of successful inhibitors avail-
able on the market, there is an urgent need for developing ad-
ditional therapeutically useful DPP IV inhibitors. A large
number of patents and leading research articles have appeared
in the recent past that deal with this issue.[25–29, 39, 40] However,
nearly all computer-aided efforts directed towards developing
new DPP IV inhibitors were focused on structure-based (dock-
ing) techniques and quantitative structure–activity relationship
(QSAR) methodologies, for example, comparative molecular
field and molecular similarity indices analyses (CoMFA and
CoMSIA).[41–43] Despite the excellent predictive potential of
QSAR-based methodologies (for example, CoMFA and
CoMSIA), they generally lack the ability to act as effective
search queries to mine virtual three-dimensional (3D) databas-
es for new hits.[44] Accordingly, we were prompted to develop
robust, ligand-based 3D pharmacophore(s) integrated within a
predictive QSAR model. Pharmacophore model(s) can be effec-
tively used as 3D search queries to mine 3D compound libra-
ries for new DPP IV inhibitors, whereas the associated QSAR
model(s) can help to prioritize the selected hits for subsequent
in vitro assays. Therefore, we employed the HYPOGEN module
from the CATALYST package[45] to explore the pharmacophoric
space of a large and diverse set of reported DPP IV inhibitors.
Subsequently, genetic function algorithm (GFA) and multiple
linear regression (MLR) analyses were employed to search for
an optimal QSAR model(s) that combine high-quality, binding
pharmacophores with other molecular descriptors capable of
explaining bioactivity variation across a collection of diverse
DPP IV inhibitors. The optimal pharmacophores were later
used as 3D search queries to screen virtual compound libraries
for new DPP IV inhibitors. We recently reported similar strat-
egies for the discovery novel lead inhibitors against GSK-3b,[46]

pseudomonal quorum sensing,[47] h-PTP 1B,[48] and bacterial
MurF enzyme.[49]

Results and Discussion

CATALYST-HYPOGEN models drug–receptor interaction using
information derived from ligand structures.[45, 50–57] HYPOGEN
identifies a 3D array of a maximum of five chemical features
common to active training molecules, which provides a relative
alignment for each input molecule consistent with their bind-
ing to a proposed common receptor site. The chemical fea-
tures considered can be hydrogen bond donors and acceptors
(HBDs and HBAs), aliphatic and aromatic hydrophobes, positive
and negative charges, positive and negative ionizable groups,
and aromatic planes. The conformational flexibility of training
ligands is modeled by creating multiple conformers, sensibly
prepared to emphasize representative coverage over a speci-
fied energy range. CATALYST pharmacophores have been used
as 3D queries for database searching and in 3D-QSARACHTUNGTRENNUNGstudies.[52–54, 58–62]

Data mining and conformational coverage

The literature was extensively surveyed to collect a large group
of diverse DPP IV inhibitors (1–358, see Figure 1, and table A in

the Supporting Information).[63–73] The 2D structures of the
training inhibitors were imported into CATALYST and converted
automatically into plausible 3D single conformer representa-
tions with the rule-based methods implemented within the
package. The resulting single conformer 3D structures were
then used as starting points for conformational analysis and in
the determination of various molecular descriptors for QSAR
modeling.

The conformational space of each inhibitor was extensively
sampled utilizing the poling algorithm employed within CATA-
LYST. Poling promotes conformational variation by employing
a molecular mechanical force field algorithm that penalizes
similar conformers.[54] Conformational coverage was performed
employing the “Best” module to ensure extensive sampling of
conformational space to guarantee minimal conformation-re-
lated noise during the pharmacophore generation and valida-
tion stages. Pharmacophore modeling and pharmacophore-
based in silico search procedures are sensitive to inadequate
conformational sampling within the training compounds.[74]

Exploration of DPP IV pharmacophoric space

CATALYST-HYPOGEN enables automatic pharmacophore con-
struction by using a collection of at least 16 molecules with
bioactivities spanning over four orders of magnitude.[45, 53, 75]

HYPOGEN implements an optimization algorithm that evalu-

Figure 1. The chemical scaffolds of training compounds (see table A in the
Supporting Information for further details).

1764 www.chemmedchem.org � 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemMedChem 2008, 3, 1763 – 1779

MED M. O. Taha et al.

www.chemmedchem.org


ates a large number of potential models within the pharmaco-
phoric “space” of a particular target through fine perturbations
to pharmacophore hypotheses that survived the subtractive
and constructive phases (see Experimental Section).[53] The
extent of the evaluated space is reflected by the configuration
(conFigure) cost calculated for each modeling run.

The size of the investigated pharmacophoric space is a func-
tion of training compounds, selected input chemical features,
and other CATALYST control parameters.[54] Restricting the ex-
plored pharmacophoric space should improve the efficiency of
optimization by allowing effective evaluation of a limited
number of pharmacophoric models.[59] However, imposing
more limitations on the “pharmacophoric space” might reduce
the possibility of converging upon optimal pharmacophoric
hypotheses, particularly if they occur outside the “boundaries”
of the pharmacophoric space.[59]

Therefore, it was decided to explore the pharmacophoric
space of DPP IV inhibitors under reasonably imposed “bounda-
ries” through four carefully selected training subsets from the
collected inhibitors: subsets A, B, C, and D (Table 1) and 32ACHTUNGTRENNUNGautomatic HYPOGEN runs (see Table 2). The software was al-
lowed to explore pharmacophoric models incorporating from
zero to three features of any particular selected feature type
(that is, HBA, HBD, hydrophobic, or aromatic ring), as shown in
Table 2. Furthermore, only 4- and 5-featured pharmacophores
were explored, that is, models with fewer features were ignor-
ed (Table 2). This restriction has the dual advantage of narrow-
ing the investigated pharmacophoric space and best-repre-
senting the feature-rich nature of the DPP IV binding pocket
(CATALYST-HYPOGEN can produce pharmacophore hypotheses
with a maximum of five features[53, 54]).

The input pharmacophore features were selected in agree-
ment with published SAR studies and crystallographic data.
For example, the fact that crystallographic information sug-

gested the involvement of Ser 630 and Tyr 547 in hydrogen
bonding with some ligands of DPP IV prompted us to select
hydrogen bond donor and acceptor (HBA and HBD) functional-
ities as possible pharmacophoric features. Similarly, the in-
volvement of Glu 205 and Glu 206 in electrostatic interactions
with most of the co-crystallized ligands characterized by X-ray
crystallography forced us to input the positive ionizable (PI)
function as a potential feature. Similarly, the following features
were fed into HYPOGEN as possible pharmacophoric features:
aromatic rings (Ring), negative ionizable (NI), and hydrophobic
features (Hbic).

It remains to be mentioned that the software was instructed
to explore pharmacophoric models of interfeature distances
ranging from 1–3 � in an attempt to access pharmacophoric
models of optimal interfeature distances (Table 2).

Each automatic HYPOGEN run generated ten pharmacophor-
ic hypotheses, yielding 320 models from 32 automatic runs.

Table 1. The training subsets employed in exploring the pharmacophoric
space of DPP IV inhibitors.

Training
subsets[a]

Most
active[b]

Moderately active Least
active

Number of
compounds

A 32, 102, 265,
269 340, 341,
342, 351

2, 13, 22, 23, 29, 31, 88,
95, 99, 103, 148, 221,
222, 244, 245, 248, 285,
286, 290, 297, 302, 303,
304, 318, 336, 337, 358

83,
85,
120

38

B 265, 267, 269,
281, 340, 341,
342, 351

119, 221, 222, 244, 248,
285, 301, 302, 318, 324

121,
128

20

C 80, 178, 179,
201

58, 60, 62, 65, 70, 73,
119, 130, 148, 164, 175,
181, 183, 186, 187, 190,
191, 217

76,
78,
121,
128

26

D 199, 200, 201 65, 119, 129, 182, 186,
187, 189, 190, 191, 192,
212, 213, 217

120,
121,
128

19

[a] Numbers correspond to compounds in Figure 1, and table A in the
Supporting Information. [b] Potency categories as defined by equations
(2) and (3).

Table 2. Training sets and CATALYST run parameters employed for explor-
ing DPP IV pharmacophoric space.

Run
No.

Training
subsets[a]

Selected Input Features:
Types and ranges[b,c]

Interfeature
Spacing[d]

HBA HBD Hbic Hbicaro Ring PI NI (�)

1

A

0-3[e] 0-3 0-3 - 0-3 - 0-3 3
2 0-3 0-3 0-3 - 0-3 - 0-3 1
3 0-3 0-3 - 0-3 - 0-3 0-3 3
4 0-3 0-3 - 0-3 - 0-3 0-3 1
5 0-3 - 0-3 - 0-3 0-3 0-3 3
6 0-3 - 0-3 - 0-3 0-3 0-3 1
7 2-3 0-1 0-2 0-1 - 0-1 - 3
8 2-3 0-1 0-2 0-1 - 0-1 - 1
9

B

0-3 0-3 0-3 - 0-3 - 0-3 3
10 0-3 0-3 0-3 - 0-3 - 0-3 1
11 0-3 - 0-3 - 0-3 0-3 0-3 3
12 0-3 - 0-3 - 0-3 0-3 0-3 1
13 0-3 0-3 0-3 0-3 - 0-3 - 3
14 0-3 0-3 0-3 0-3 - 0-3 - 1
15 1-3 0-1 1-3 - 0-1 0-1 - 3
16 1-3 0-1 1-3 - 0-1 0-1 - 1
17

C

0-3 0-3 0-3 - 0-3 - 0-3 3
18 0-3 0-3 0-3 - 0-3 - 0-3 1
19 0-3 - 0-3 - 0-3 0-3 0-3 3
20 0-3 - 0-3 - 0-3 0-3 0-3 1
21 0-3 0-3 0-3 0-3 - - 0-3 3
22 0-3 0-3 0-3 0-3 - - 0-3 1
23 1-2 0-1 0-2 - 0-1 - 0-1 3
24 1-2 0-1 0-2 - 0-1 - 0-1 1
25

D

0-3 0-3 0-3 0-3 - - 0-3 3
26 0-3 0-3 0-3 0-3 - - 0-3 1
27 0-3 0-3 0-3 - 0-3 - 0-3 3
28 0-3 0-3 0-3 - 0-3 - 0-3 1
29 0-3 - 0-3 - 0-3 0-3 0-3 3
30 0-3 - 0-3 - 0-3 0-3 0-3 1
31 0-2 - 0-3 - 0-1 0-1 0-1 3
32 0-2 - 0-3 - 0-1 0-1 0-1 1

[a] Corresponds to training sets in Table 1. [b] HBA: hydrogen bond ac-
ceptor ; HBD: hydrogen bond donor; Ring: aromatic ring; Hbic: hydro-
phobic; Hbicaro: hydrophobic aromatic; PI : positive ionizable; NI : nega-
tive ionizable. [c] The number of output features was allowed to vary
from four to five features. Other parameters were set to their default
values. [d] Permitted interfeature spacing in each run. [e] Range of input
features allowed.
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The binding hypotheses from each run were automatically
ranked according to their corresponding “total cost” values.
Total cost is defined as the sum of error cost; weight cost, and
configuration cost (see Experimental Section). Error cost pro-
vides the highest contribution to total cost and it is directly re-
lated to the intrinsic capacity of the particular hypothesis in
correlating the molecular structures to the corresponding bio-
logical responses.[45, 53–55] HYPOGEN also calculates the cost of
the null hypothesis, which presumes that there is no relation-
ship in the data and that experimental activities are normally
distributed about their mean. Accordingly, the greater the dif-
ference from the null hypothesis cost (residual cost, Table 3),
the more likely that the hypothesis does not reflect a chance
correlation, that is, statistical significance.[45, 53–55] An additional
validation technique based on Fisher’s randomization test was
recently introduced into CATALYST, that is, Cat.Scramble.[45, 76] In
this test the biological data and the corresponding structures
are scrambled several times, and the software is challenged to
generate pharmacophoric models from the randomized data
(see Experimental Section).

Most pharmacophoric models illustrated excellent success
criteria (Table 3) in particular they have significant Fisher confi-
dence levels (�85 %). The emergence of numerous high-quali-
ty pharmacophore models is probably related to the ability of
DPP IV ligands to assume multiple pharmacophoric binding
modes within the binding pocket. Therefore, it is quite chal-
lenging to select any particular pharmacophore hypothesis as
a sole representative of the binding process.

QSAR modeling

Despite the significance of pharmacophoric models in under-
standing ligand macromolecule recognition and as 3D search
queries, their predictive value as 3D-QSAR models is generally
limited by steric shielding and bioactivity-modulating auxiliary
groups.[56] The general limitations of pharmacophore models
combined with the abundance of plausible DPP IV pharmaco-
phores (280 models of Fisher confidence �85 %) prompted us
to employ classical QSAR analysis to search for the best combi-
nation of orthogonal pharmacophores and other structuralACHTUNGTRENNUNGdescriptors capable of explaining bioactivity variation across
the whole range of collected compounds (1–358 ; Figure 1,
and table A in the Supporting Information). This task was per-
formed with a genetic function algorithm-multiple linearACHTUNGTRENNUNGregression QSAR analysis (GFA-MLR-QSAR).

However, to avoid overloading GFA-MLR with many inde-
pendent variables, which may allow the emergence of less-

than-optimal regression models,[77] we clustered the successful
pharmacophores (of confidence �85 %, 280 models) into 56
groups and only considered the best representatives for GFA-
MLR-QSAR analysis (models shown in Table 3). The selected
representatives were fitted against the training list of inhibitors
(287 inhibitors; Figure 1, and table A in the Supporting Infor-
mation) and were enrolled as independent variables (genes) in
a cycle of GFA-MLR-QSAR analysis over 30,000 iterations (see
Experimental Section).[77, 78] However, as it is essential to assess
the predictive power of the resulting QSAR models on an ex-
ternal set of inhibitors, we randomly selected 71 molecules
(marked with asterisks in table A in the Supporting Informa-
tion) and employed them as external test molecules for vali-
dating the QSAR models (r2

PRESS). Moreover, the models were
cross-validated automatically using the leave-one-out cross--ACHTUNGTRENNUNGvalidation.[77, 78]

Equation (1) shows the best possible QSAR model as judged
from its predictive ability against the external testing list.
Figure 2 shows the scatter plots of experimental versusACHTUNGTRENNUNGestimated bioactivities for the training and testing inhibitor
subsets, respectively, as calculated by equation (1).

Log ð1=IC50Þ ¼�2:290þ0:024ðHypo32=8Þ2þ0:126½Hypo4=10�3:569��17:099½JursRNCG�0:121�þ6� 10�4½1:022� 104�Apol�
þ0:181ðk3aÞ2�0:159ðk3Þ2þ0:009ð1cÞ2�0:195½12:86�1c��0:187½SssCH2�1:037�þ0:082½SssssCþ11:00�
�0:104ðAtypeO60Þ2�0:293ðAtypeF81Þ2�0:544½2�AtypeO58�þ0:708½6:00�AtypeH47��1:508½AtypeC2�7:00�
�0:167ðAtypeC1Þ

r2
287 ¼ 0:74, F-statistic ¼ 44:5, r2

BS ¼ 0:74, r2
LOO ¼ 0:69, r2

PRESSð71Þ ¼ 0:51

ð1Þ

where, r2
287 is the squared correlation coefficient, r2

LOO is the
leave-one-out squared correlation coefficient, r2

BS is the boot-
strapping regression coefficient, and r2

PRESS(71) is the predictive
r2 determined for the 71 test compounds. Incidentally, remov-
ing two outliers from the testing set improved the r2

PRESS value
to 0.60. Hypo32/8 and Hypo4/10 are the fit values of the train-
ing compounds against the 8th and 10th pharmacophores
from the 32nd and 4th automatic HYPOGEN runs, respectively
(Table 3 and Table 4). Jurs-RNCG is obtained by dividing the
charge of most negative atom by the total negative charge of
the particular molecule. Jurs descriptors are an electrostatic set
of descriptors that combines shape and electronic information
to characterize molecules.[79] They are calculated by mapping
atomic partial charges on solvent-accessible surface areas ofACHTUNGTRENNUNGindividual atoms. Apol is the sum of atomic polarizabilities.[77]

k3a and k3 are the third order and third order alpha-modified
Kier’s shape indices, respectively.[77] 1c is the first order Kier and
Hall connectivity index.[80] SssCH2 and SssssC are electrotopo-
logical state sum indices for methylene and quaternary carbon
atoms, respectively.[77] AtypeC1, AtypeC2, AtypeO58, AtypeO60,
AtypeF81, and AtypeH47 are atom-type-based descriptors en-
coding for the hydrophobic contributions of individual atoms
(carbon, oxygen, fluorine, and hydrogen atoms, respective-
ly).[81, 82]

Several descriptors emerged from equation (1) in spline
format. The spline terms employed herein are “truncated
power splines” and are denoted by bolded brackets ([ ]). For
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Table 3. The performance of the best representatives of clustered pharmacophore hypotheses generated for DPP IV.

Training
set[a]

Run[b] Hypotheses[c] Pharmacophoric features in
generated hypotheses

Total
cost

Cost of null
hypothesis

Residual
cost[d]

R[e] F-statistic[f] Cat
scramble

A

1
9[g] 3xHBA, Hbic 190.2 239.1 48.9 0.770 64.9 95
10 2xHBA, HBD, Hbic 190.4 239.1 48.7 0.770 99.5 95

2
1 3xHBA, Hbic 181.9 239.1 57.2 0.825 73.5 95
8 3xHBA, Hbic 194.4 239.1 44.7 0.750 81.2 95

4
3 3xHBA, Hbicaro 200.6 239.1 38.5 0.690 58.4 95

10[h] 3xHBA, PI 207.1 239.1 32.0 0.640 76.0 95

5
2 2xHBA, 2Hbic 186.6 239.1 52.5 0.790 64.5 95
6 2xHBA, Hbic, PI 189.4 239.1 49.7 0.780 47.2 95
8 2xHBA, Hbic, PI 191.4 239.1 47.7 0.766 53.5 95

6
8 2xHBA, 2xHbic 192.3 239.1 46.8 0.765 54.4 95
9 2xHBA, 2xHbic 192.5 239.1 46.6 0.764 99.5 95

10 2xHBA, 2xHbic 192.6 239.1 46.5 0.764 47.7 95

7
1 3xHBA,Hbic 180.2 239.1 58.9 0.827 74.8 95
2 3xHBA, Hbic 180.6 239.1 58.5 0.830 78.0 95
7 3xHBA, Hbic 185.1 239.1 54.0 0.800 76.0 95

8 9 3xHBA, Hbic 188.8 239.1 50.3 0.780 70.3 95

B

10
1 HBA, HBD, Hbic, Ring 94.9 137.4 42.5 0.94 85.8 95
9 HBA, HBD, 2xHbic 97.6 137.4 39.8 0.92 82.6 95

12

2 HBA, 2xHbic, PI, Ring 95.3 137.4 42.1 0.93 57.1 90
3 HBA, 3xHbic, Ring 95.8 137.4 41.6 0.93 71.6 90
5 HBA, 3xHbic, PI 97.3 137.4 40.1 0.92 56.3 90
7 HBA, 3xHbic, PI 99.7 137.4 37.7 0.90 52.1 90

10 2xHBA, Hbic, Ring 101.0 137.4 36.4 0.930 87.6 90

13
4 HBA, HBD, Hbicaro, 2xHbic 94.6 137.4 42.8 0.930 72.8 95
6 2xHBA, HBD, Hbic 94.7 137.4 42.7 0.940 96.2 95

10 2xHBA, 2xHbic, Hbicaro 96.7 137.4 40.7 0.920 120.9 95

14
8 3xHBA, Hbicaro 97.9 137.4 39.5 0.91 55.0 95

10 HBA, HBD, 3xHBic 98.3 137.4 39.1 0.92 67.0 95
15 2 HBA, HBD, Hbic, Hbicaro 93.1 137.4 44.3 0.955 73.7 95

16
1 HBA, 2xHbic, PI, Ring 92.1 137.4 45.3 0.960 70.2 95
7 2xHBA, Hbic, Ring 99.6 137.4 37.8 0.909 79.3 95

10 HBA, 3xHbic, PI 100.1 137.4 37.3 0.905 25.0 95

C

18 5 HBA - HBD - NI - Ring 138.9 169.9 31.0 0.800 35.3 85
19 1 HBA, PI, NI, Ring 137.5 169.9 32.4 0.825 32.5 90

21
1 2xHBA, HBD, Hbicaro 132.8 169.9 37.1 0.858 11.2 95
2 HBA, HBD, 2xHbic, Hbicaro 140.9 169.9 29.0 0.766 19.2 85

23
1 HBA, HBD, NI, Ring 134.4 169.9 35.5 0.825 34.0 90
3 HBA, HBD, Hbic, Ring 137.0 169.9 32.9 0.803 15.0 90

10 HBA, HBD, NI, Ring 141.3 169.9 28.6 0.790 33.9 85
24 10 HBA, HBD, Hbic, Ring 141.2 169.9 28.7 0.792 22.8 85

D

25
3 HBD, 2xHbicaro, Hbic, NI 91.5 122.8 31.3 0.937 47.7 95
6 HBA, Hbic, HBD, NI, Hbicaro 92.3 122.8 30.5 0.930 53.6 95
9 HBA, 2xHBD, Hbic 93.3 122.8 29.5 0.926 25.5 95

26
4 2xHBA, HBD, Hbic 92.2 122.8 30.6 0.940 65.5 95

10 HBA, HBD, 2xHbicaro, NI 94.5 122.8 28.3 0.915 33.8 95

27
3 HBD, 2xHbic, NI, Ring 91.2 122.8 31.6 0.939 41.8 95
9 HBD, NI, 2xRing 93.7 122.8 29.1 0.920 34.2 95

28 9 HBA, HBD, NI, Ring 91.6 122.8 31.2 0.930 32.6 95
29 10 2xHBA, Hbic, Ring 93.5 122.8 29.3 0.913 68.1 95

30
5 2xHbic, NI, PI, Ring 93.5 122.8 29.3 0.921 43.1 95
7 HBA, 3xHbic, NI 94.6 122.8 28.2 0.912 35.7 95
9 HBA, 2xHbic, PI 95.5 122.8 27.3 0.900 70.6 95

31
1 2xHBA, PI, Ring 89.1 122.8 33.7 0.955 37.2 95
6 3xHbic, PI, Ring 93.5 122.8 29.3 0.920 36.7 95
9 2xHbic, NI, PI, Ring 94.2 122.8 28.6 0.916 56.6 95

32 8[h] 2xHBA, 2xHbic, NI 96.6 122.8 26.2 0.895 48.4 95

[a] Corresponds to training sets in Table 1. [b] Corresponds to runs in Table 2. [c] Best models from their respective clusters, as judged based on F-statistic.
[d] The difference between the total cost and the cost of the corresponding null hypotheses. [e] The correlation coefficients between bioactivity estimates
and bioactivities of corresponding training set compounds. [f] Fisher statistic calculated based on the linear regression between the fit values of collected
inhibitors (1–358 ; Figure 1, and table A in the Supporting Information) against the pharmacophore hypothesis [employing the “best fit” option and equa-
tion (5)] and their respective anti-DPP IV bioactivities. [g] Rank of each hypothesis in each particular run by CATALYST. [h] Bolded pharmacophores emerged
from the best QSAR equations.
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example, [f(x) - a] equals zero if the value of (f(x) - a) is nega-
tive; otherwise, it equals (f(x) - a).[77]

Despite the mediocre statistical performance of equation (1)
(that is, r2

287, F-statistic, r2
BS, r2

LOO, r2
PRESS), the sheer size of the

training and testing sets significantly enhances its statistical
weight allowing consequent informative inferences: Two phar-

macophore hypotheses emerged in this model and recurred in
other higher-ranking QSAR equations, namely, Hypo4/10 and
Hypo32/8. Interestingly, both binding models are of low rank
among other models generated in the corresponding HYPO-
GEN run, that is, they ranked 10th and 8th within runs four and
32, Table 3. However, it must be remembered that the pharma-
cophore ranking procedure implemented in CATALYST is de-
pendent on the selected subset of training compounds em-
ployed in pharmacophore generation, and therefore, doesn’t
necessarily reflect the behavior of the pharmacophore models
against the whole list of collected compounds, which explains
the apparently odd selection of low-ranking models in the
best QSAR equation. Table 4 shows the three-dimensional co-
ordinates of the two pharmacophores.

The emergence of two orthogonal pharmacophoric models
(Hypo32/8 and Hypo4/10, cross-correlation r2 = 0.23) in the op-
timal QSAR equation, suggests they represent two comple-
mentary binding modes accessible to ligands within the bind-
ing pocket of DPP IV, that is, one of the pharmacophores can
optimally explain the bioactivities of some training inhibitors,
whereas the other inhibitors are more appropriately explained
by the second pharmacophore.[59] Figure 3 shows how Hypo4/
10 maps two potent DPP IV inhibitors 201 and 351 (IC50 = 1.80
and 4.30 nm, respectively) and Figure 4 shows how Hypo32/8
maps 201, whereas Table 4 shows the X, Y, and Z co-ordinates
of the two pharmacophores.

Emergence of negative contributions of Apol and JursRNCG
in equation (1) suggests that strongly negative and/or polariza-
ble moieties generally adversely influence ligand–DPP IV affini-
ty. This trend is explainable by the proposition that ionized li-
gands, in particular negatively charged ones, favor hydration
instead of docking into the binding site, particularly if they are
misaligned with their corresponding counterparts in the bind-
ing pocket. A similar analysis was recently used to explain the
general nonspecific enhancement in ligand–receptor affinity
concomitant to increases in ligand lipophilicity.[83]

On the other hand, emergence of connectivity indices and
electrotopological and shape descriptors (for example, k3a and

k3, 1c, SssCH2, and SssssC) in
equation (1) illustrate certain
roles played by the ligands’ top-
ology in the binding process.
However, despite the predictive
significance of these descriptors,
their information content is
quite obscure. A similar conclu-
sion can be extended to atom-
type descriptors (for example,
AtypeO60, AtypeF81, and
AtypeO58) in equation (1).

Addition of exclusion volumes

Despite the significance of
ligand-based pharmacophores as
3D QSAR models and search
queries, they suffer from two

Figure 2. a) Experimental versus fitted log values (1/IC50), 287compounds,
r2

LOO = 0.69; b) Experimental versus predicted, 71 compounds, r2
PRESS = 0.51,

bioactivities calculated from the best QSAR model [equation (1)] . The solid
lines are the regression lines for the fitted and predicted bioactivities of
training and test compounds, respectively, whereas the dotted lines indicate
the 1.0 log point error margins.

Table 4. Pharmacophoric features and corresponding weights, tolerances, and 3D co-ordinates of Hypo4/10[a]

and Hypo32/8[b] .

Model definitions Features

HBA HBA HBA PI

Hypo4/10

Weights 1.856 1.856 1.856 1.856
Tolerances 1.6 2.2 1.6 2.2 1.6 2.2 1.6

Coordinates X -6.82 -6.39 1.67 2.34 1.25 -0.85 1.58
Y 5.71 8.64 -0.85 1.57 -0.17 1.13 -3.19
Z -0.93 -0.46 1.55 3.18 -1.44 -3.15 -1.20

HBA HBA Hbic Hbic NI

Hypo32/8

Weights 1.608 1.608 1.608 1.608 1.608
Tolerances 1.6 2.2 1.6 2.2 1.6 1.6 1.6

Coordinates X -1.28 -4.12 1.30 3.02 -4.32 -0.46 -5.50
Y 1.46 1.86 3.03 2.12 -3.58 4.08 -0.54
Z -0.23 0.66 -4.59 -6.92 6.14 -1.30 6.65

[a] Hypo4/10 is hypothesis number 10 generated in run number 4. [b] Hypo32/8 is hypothesis number 8 gener-
ated in run number 32.
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major drawbacks: Firstly, pharmacophore models lack specific
information about the electronic contributions of different sub-
stituents. Nevertheless, QSAR analysis can identify statistically
significant electronically-related descriptors, and therefore can
partially solve this problem. Secondly, the generated models
lack steric constraints necessary to define the size of the bind-
ing pocket. This fault renders pharmacophoric models rather
promiscuous without steric limitations. Therefore, we decided
to decorate the optimal models with exclusion spheres em-
ploying the HIPHOP-REFINE module implemented within CATA-
LYST[45] to mark the steric requirements of the binding pocket.
Excluded volumes resemble sterically inaccessible regions
within the binding site.[45, 75]

Accordingly, two structurally diverse training subsets were
carefully selected from the collected compounds for HIPHOP-
REFINE modeling: training subsets E and F to add exclusion
spheres for Hypo32/8 and Hypo4/10, respectively (Table 5). The
training compounds were selected in such a way that the bio-

activities of weakly active com-
pounds are explainable by steric
clashes within the binding
pocket. Figure 3 and Figure 4,
shows the refined Hypo4/10 (40
added exclusion volumes) and
refined Hypo32/8 (37 added ex-
clusion volumes).

In silico screening of the NCI
database and subsequentACHTUNGTRENNUNGexperimental evaluation

The fact that the emerging
pharmacophores are orthogonal
and complement each other in
explaining bioactivity variations
across the training compounds,
that is, they represent different
binding modes within the bind-

ing pocket, prompted us to combine them as 3D search quer-
ies. They were employed to screen the national cancer institute
(NCI) list of compounds (238,819 compounds)[45] and our in-
house built database of established drugs (1,490 compounds).
Hypo32/8 and Hypo4/10 captured 383 and 3836 hits, respec-
tively. These were subsequently filtered based on Lipinski’s and
Veber’s rules[84, 85] eventually leaving 1498 molecules. The se-
lected hits were fitted against the two pharmacophores (see
equation (5) in the Experimental Section) and their fit values
were substituted in QSAR equation (1) to determine their pre-
dicted bioactivities. To minimize the effects of possible extrap-
olatory prediction errors[86] on decisions regarding hits that
merit subsequent in vitro testing, we employed the predicted
Log ACHTUNGTRENNUNG(1/IC50) values merely to rank the corresponding hits. The
highest ranking 56 NCI hits and seven drug molecules (gemi-
floxacin, famotidine, nizatidine, sildenafil, valacyclovir, iodipa-
mide, and telmisartan) were requested for experimental valida-
tion. Only 28 NCI hits were available. All tested drug molecules

Figure 3. a) Hypo4/10: the pharmacophoric features of the binding model, hydrogen bond acceptors are represented as light grey vectored spheres, positive
ionizable groups as black spheres ; b) Hypo4/10 with added exclusion spheres (dark grey) as performed by HIPHOP-REFINE; c) Hypo4/10 fitted against potent
DPP IV inhibitor 201 (IC50 = 1.80 nm) ; d) Hypo4/10 fitted against potent inhibitor 351 (IC50 = 4.30 nm),

Figure 4. a) Hypo32/8: the pharmacophoric features of the binding model, hydrogen bond acceptors are repre-
sented as green vectored spheres, negative ionizable groups as black spheres, and hydrophobic features as dark
grey spheres; b) Hypo32/8 with added exclusion spheres as performed by HIPHOP-REFINE; c) Hypo32/8 fitted
against potent DPP IV inhibitor 201 (IC50 = 1.80 nm).
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and 22 NCI hits were found to possess in vitro inhibitory ac-
tions against DPP IV at a concentration of 10 mm. Figure 5
shows the active hits, whereas Table 6 shows their names or
NCI codes and their estimated and experimental DPP IV bioac-
tivities.

Interestingly, gemifloxacin (386) presented the most potent
DPP IV inhibitory activity (IC50 = 1.12 mm). Figure 6 shows how
Hypo4/10 fits gemifloxacin. On the other hand, Figure 7 shows
how Hypo32/8 fits 365 (the highest ranking inhibitor fitting
Hypo32/8). To substantiate the anti-DPP IV activity of 386
(gemifloxacin), it was decided to test its ability to lower plasma
glucose concentrations after oral glucose challenge (that is,
OGTT) in Balb/c mice. Oral administration of gemifloxacin illus-
trated a dose-dependent inhibition of glucose excursion, as
shown in Figure 8. Furthermore, it illustrated significant reduc-
tion in the area under the blood glucose/time curve (AUC) at
three dosing levels (Figure 8 B). The results suggest significant
improvement in impaired glucose tolerance in Balb/c mice in
response to gemifloxacin, probably by elevating intact GLP-1
and insulin levels in plasma.

Intriguingly, gemifloxacin has been recently reported to pos-
sess nanomolar inhibitory action against the prodiabetic target
glycogen synthase kinase 3b (GSK-3b).[46] The combined inhibi-
tory potential of gemifloxacin against two important prodia-
betic targets suggests that this anti ACHTUNGTRENNUNGbacterial agent could be an

excellent lead for the develop-
ment of a novel class of dual
anti ACHTUNGTRENNUNGdiabetic inhibitors against
DPP IV and GSK-3b.

Comparison of Hypo4/10 and
Hypo32/8 with the binding site
of DPP IV

Despite the uncertainties of crys-
tallographic data,[87] pharmaco-
phore features obtained by
pharmacophore/QSAR modeling
can be compared with the struc-
ture of the DPP IV binding site
to identify probable residues im-
portant for inhibition. The fea-
tures in Hypo4/10 as well as the
alignment of 386 (gemifloxacin)
(IC50 = 1.1 mm), as proposed by
this pharmacophore, were com-
pared with the corresponding
structure as it docks into the
binding pocket of DPP IV (PDB
code: 2G63, resolution 2.0 �),[88]

shown in Figure 6. The docking
experiment was performed em-
ploying the FRED docking
engine and Chemgauss2 scoring
function.[89] A marked similarity
was observed between the fea-
tures proposed by the pharma-

cophore models and the ligand-binding features in the docked
structures.

In the highest-ranking docked pose of 386 (Figure 6) the
carboxylic acid moiety of Glu 206 binds to the amino group of
386 via a hydrogen-bond-reinforced ionic interaction corre-
sponding to mapping the amino group with a positive ioniza-
ble feature in Hypo4/10 (Figure 6). Moreover, the aromatic
fluoro substituent of 386 seems to be hydrogen bonded to
the guanidine side chain of Arg 125, which agrees with map-
ping the same fluorine atom with the HBA feature in Hypo4/
10, as in Figure 6. Similarly, mapping the methoxyimino sub-
stituent in 386 with a HBA in Hypo4/10 correlates nicely with
the hydrogen-bonding interaction bridging the methoxyimino
oxygen and Ser 209. Finally, the docking experiment proposes
a hydrogen-bond-reinforced ionic interaction between the car-
boxylic acid moiety of 386 and the terminal amino group of
Gln553, agreeing with a HBA feature in Hypo4/10 mapping the
carboxylic group (Figure 6).

On the other hand, the validity of Hypo32/8 can be further
established by comparing the way it maps relevant hits with
the docked poses of these hits inside the binding pocket. We
selected compound 365 (inhibited DPP IV by 34 % at 10 mm)
for this purpose as it illustrated excellent fit against Hypo32/8,
as shown in Figure 7. The HBA feature mapping the carboxylic
acid group in 365 corresponds to hydrogen bonding with

Table 5. Training subsets used for adding excluded spheres for Hypo32/8 and Hypo4/10 using HIPHOP-REFINE
module of CATALYST.

Training subset E[a] Training set F[a]

Compd[b] IC50 [nm] Principal
value

Max ACHTUNGTRENNUNGOmitFeat[c] Compd IC50 [nm] Principal
value

Max ACHTUNGTRENNUNGOmitFeat

194 7.10 2 0 31 26.00 2 0
195 10.00 2 0 102 8.00 2 0
196 3.70 2 0 196 3.70 2 0
197 5.10 2 0 203 0.48 2 0
199 12.00 2 0 206 0.83 2 0
200 13.00 2 0 209 1.70 2 0
201 1.80 2 0 342 8.00 2 0
203 0.48 2 0 343 13.00 2 0
204 1.60 2 0 344 4.10 2 0
206 0.83 2 0 347 8.00 2 0
207 9.50 2 0 350 8.60 2 0
209 1.70 2 0 351 4.30 2 0
211 12.00 2 0 352 2.70 2 0
214 0.30 2 0 354 6.30 2 0
76 65 000 0 1 355 6.20 2 0
77 36 000 0 1 356 7.50 2 0
85 12 400 0 1 76 65 000 0 0
89 15 600 0 1 77 36 000 0 0

120 10 0000 0 2 78 19 000 0 1
121 16 480 0 2 85 12 400 0 1
128 33 000 0 2 289 54 000 0 2
185 1200 0 1 304 7900 0 2
191 1640 0 1
218 4200 0 1
219 3300 0 1
289 54 000 0 1

[a] Training subset E for adding exclusion volumes to Hypo32/8 and subset F for adding exclusion volumes for
Hypo4/10. [b] Compound numbers are as in Figure 1, and table A in the Supporting Information. [c] Max-ACHTUNGTRENNUNGOmitFeat: Maximum omitted features.
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Figure 5. The chemical structures of the tested hits.
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Trp 629 and/or Arg 125 in the docked pose (Figure 7). The close
proximity of the carbonyl of 365 to the hydroxyl group of
Tyr 547 in the docked structure suggests mutual hydrogen
bonding. This proposition is supported by a HBA feature map-
ping the same carbonyl in Hypo32/8. Similarly, the second car-
boxyl of 365 is mapped by a negative ionizable (NI) feature in
Hypo32/8 corresponding to ionic interaction with the guani-
dine moiety of Arg 125 in the docked pose (Figure 7). Finally,
the cyclopentene of 365 is docked adjacent to Phe 357 sug-
gesting the existence of significant mutual van der Waals’
stacking interactions, which correlate with a hydrophobic fea-
ture mapping the cyclopentene ring in Hypo32/8 (Figure 7).

Conclusion

This work includes extensive exploration of the pharmaco-
phore space of DPP IV inhibitors utilizing CATALYST-HYPOGEN.
QSAR analysis was employed to select the best combination of
molecular descriptors and pharmacophore models capable of
explaining bioactivity variation across an informative list of
training compounds. The best binding hypotheses were used
to screen two of our structural databases for new DPP IV inhib-
itors. The resulting hits were prioritized for in vitro testing
based on their predicted bioactivities. The pharmacophoric
features of the optimal models agree with the binding features

proposed by docking evaluation. One of our moderately
potent anti-DPP IV hits, gemifloxacin, was recently reported to
have potent inhibitory action against the prodiabetic target
GSK-3b, which opens the door for the development of novel
dual anti ACHTUNGTRENNUNGdiabetic inhibitors against DPP IV and GSK-3b.

Experimental Section

Molecular modeling

Software and hardware

The following software packages were utilized in the present
research: CATALYST (Version 4.11), Accelrys Inc. (www.accelrys.
com), USA; CERIUS2 (Version 4.10), Accelrys Inc. (www.accelrys.
com), USA; OMEGA (Version 2.1.0), OpenEye Scientific Software
(www. eyesopen.com), USA; FRED (Version 2.1.2), OpenEye Sci-
entific Software, (www.eyesopen.com), USA; CS ChemDraw
Ultra 7.01, Cambridge Soft Corp. (http://www.cambridgesoft.
com), USA. Pharmacophore modeling and QSAR analysis were
performed using CATALYST (HYPOGEN module) and CERIUS2
software suites installed on a Silicon Graphics Octane2 desktop
workstation equipped with a dual 600 MHz MIPS R14000 pro-
cessor (1.0 GB RAM) running the Irix 6.5 operating system.
Docking studies were performed using FRED and Omega soft-
ware installed on a Pentium 4 PC.

Table 6. The hit molecules captured by Hypo32/8 and Hypo10/4, their corresponding QSAR estimates from equation (1), and their in vitro bioactivities.

Tested Hits[a] NCI codes/names Fit values against[b] QSAR-based estimates In vitro Anti-DPP IV Activity
Hypo32/8 Hypo4/10 IC50 [mm][c] Inhibition [%][d] IC50 [mm]

359 337722 0 3.756 6.14 52.5 –
360 661075 0 4.534 6.2 � 10�4 20.0 –
361 281199 0 3.776 1.54 � 10�3 13.5 –
362 382748 0 4.129 2.1 � 10�3 23.5 –
363 38282 0 4.925 8.7 � 10�3 20.0 –
364 138927 0 6.958 9.4 � 10�3 18.0 –
365 294730 6.044 0 5.4 � 10�4 34.0 –
366 345809 0 7.272 4.1 � 10�2 25.0 –
367 696903 0 3.091 6.5 � 10�2 3.00 –
368 120776 0 4.097 3.6 � 10�4 29.0 –
369 661077 0 4.551 7.1 � 10�2 25.0 –
370 661081 0 4.941 7.4 � 10�2 15.0 –
371 382931 0 5.793 8.2 � 10�2 26.0 –
372 339919 0 5.748 8.2 � 10�2 33.0 –
373 655073 0 6.651 2.9 � 10�1 5.00 –
374 44037 0 6.394 4.0 � 10�3 30.0 –
375 279291 0 7.021 4.6 � 10�2 16.0 –
376 134121 0 7.285 4.0 � 10�2 28.0 –
377 134131 5.186 0 2.8 � 10�2 18.0 –
378 647711 0 2.851 9.5 � 10�6 35.6 –
379 114955 0 2.753 23 19.8 –
380 67053 0 5.581 1.7 20.0 –
381 Iodipamide 7.468 0 1.5 � 10�11 34.0 –
382 Famotidine 0 6.810 1.6 � 10�3 26.2 –
383 Telmisartan 1.815 0 3.6 � 10�2 5.00 –
384 Sildenafil 0 6.543 2.6 � 10�2 5.00 –
385 Valacyclovir 0 6.924 4.5 � 10�3 42.0 42.9
386 Gemifloxacin 0 6.1 8.9 � 10�3 65.0 1.12
387 Nizatidine 0 4.874 25.2 49 6.06

[a] Structures as in Figure 5. [b] Best-fit values against each binding hypothesis calculated by equation (5). [c] As calculated by QSAR equation (1). [d] Per-
centage inhibition at 10 mm.
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Data set

The structures of 358 DPP IV enzyme inhibitors (Figure 1, and
table A in the Supporting Information) were collected from pub-
lished literature.[63–73] The in vitro bioactivities of the collected in-
hibitors were expressed as the concentration of the test com-
pound that inhibited the activity of DPP IV enzyme by 50 % (IC50).
Figure 1 shows the structures and IC50 values of the considered in-
hibitors (see also table A in the Supporting Information). The loga-
rithm of measured IC50 (nm) values were used in pharmacophore
modeling and QSAR analysis, thus correlating the data linear to the
free energy change. In one case in which the IC50 value was given
as greater than 100 mm (compound 120, table A in the Supporting
Information), it was assumed that it equals that value. This assump-
tion is necessary to allow statistical correlation and QSAR analysis.
The logarithmic transformation of IC50 values should minimize any
potential errors resulting from this assumption.

The two-dimensional (2D) chemical structures of the inhibitors
were sketched using ChemDraw Ultra. Subsequently, they were im-
ported into CATALYST, converted into the corresponding standard
3D structures, and were utilized as starting conformers for confor-
mational analysis.

Conformational analysis

Molecular flexibility was taken into account by considering each
compound as a collection of conformers representing different
areas of the conformational space accessible to the molecule
within a given energy range. Accordingly, the conformational
space of each inhibitor (1–358 ; Figure 1, and table A in the Sup-

porting Information) was explored adopting the “best conformer
generation” option in CATALYST which is based on the generalized
CHARMm force field implemented in the program. Default parame-
ters were employed in the conformation generation procedure,
that is, conformational ensembles were generated with an energy
threshold of 20 kcal mol�1 from the local minimized structure with
a maximum of 250 conformers per molecule. This search proce-
dure will eventually identify the best three-dimensional arrange-
ment of chemical functionalities explaining the activity variations
across the training set.[45, 56, 57]

Exploration of the pharmacophoric space of DPP IV

All 358 molecules, with their associated conformational models,
were regrouped into a spreadsheet. The biological data of the in-
hibitors were reported with an “uncertainty” value of three, which
means that the actual bioactivity of a particular inhibitor is as-
sumed to be situated somewhere in an interval ranging from one-
third to three-times the reported bioactivity value of that inhibi-
tor.[53–57] Subsequently, four structurally diverse training subsets
(Table 1) were carefully selected from the collection for pharmaco-
phore modeling. Typically, CATALYST requires informative training
sets that include at least 16 compounds of evenly spread bioactivi-
ties over at least four orders of magnitude.[53–57]

The selected training sets were utilized to conduct 32 modeling
runs to explore the pharmacophoric space of DPP IV inhibitors as
shown in Table 2. Different binding hypotheses were generated by
altering the interfeature spacing and the type and ranges of al-
lowed features in the resulting pharmacophores (Table 2). The max-

Figure 6. a) An optimal docked pose of inhibitor 386 (gemifloxacin, IC50 = 1.12 mm) into the binding pocket of DPP IV (PDB code: 2G63, resolution 2.00 �),
numbers indicate interatomic distances in �; b) and c) Hypo4/10 fitted against inhibitor 386, with and without exclusion spheres, respectively.
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imum number of features in each generated pharmacophore hy-
potheses was allowed to vary from four to five. CATALYST-HYPO-
GEN can produce pharmacophore hypotheses of a maximum of
five features.[46, 54]

Pharmacophore modeling employing CATALYST proceeded
through three successive phases: the constructive phase, subtrac-
tive phase, and optimization phase.[53–57] During the constructive
phase, CATALYST generates common conformational alignments
among the most-active training compounds. Only molecular align-
ments based on a maximum of five chemical features are consid-
ered. The program identifies a particular compound as being
within the most active category if it satisfies equation (2).[53–57]

ðMAct � UncMActÞ � ðAct=UncActÞ > 0:0 ð2Þ

Where “MAct” is the activity of the most active compound in the
training set, “Unc” is the uncertainty of the compounds, and “Act”

is the activity of the training com-
pounds under question. However,
if there are more than eight most-
active inhibitors, only the top
eight are used. In the subsequent
subtractive phase, CATALYST elimi-
nates some hypotheses that fit in-
active training compounds. A par-
ticular training compound is de-
fined as being inactive if it satisfies
equation (3):[53–57]

Log ðActÞ � log ðMActÞ > 3:5 ð3Þ

However, in the optimization
phase, CATALYST applies fine per-
turbations in the form of vectored
feature rotation, adding new fea-
tures, and/or removing a feature
to selected hypotheses that sur-
vived the subtractive phase to find
new models of enhanced bioactiv-
ity-to-mapping correlations that is,
improved 3D-QSAR properties.
Eventually, CATALYST selects the
highest-ranking models (ten by de-
fault) and presents them as the
optimal pharmacophore hypothe-
ses resulting from the particular
automatic modeling run.[50]

Assessment of the generated
hypotheses

When generating hypotheses, CAT-
ALYST-HYPOGEN attempts to mini-
mize a cost function consisting of
three terms: weight cost, error
cost, and configuration cost.[50, 53–57]

Weight cost is a value that increas-
es as the feature weight in a
model deviates from an ideal value
of two. The deviation between the
estimated activities of the training
set and their experimentally deter-
mined values adds to the error

cost.[53–57] The activity of any compound can be estimated from a
particular hypothesis through equation (4).[50]

Log ðEstimated activityÞ ¼ I þ Fit ð4Þ

Where, I = the intercept of the regression line obtained by plotting
the log of the biological activity of the training set compounds
against the fit values of the training compounds. The fit value for
any compound is obtained automatically by employing equation
(5).[53–55]

Fit ¼ Smapped hypothesis features � W ½1-S ðdisp=tolÞ2� ð5Þ

Where, Smapped hypothesis features represents the number of
pharmacophore features that successfully superimpose (that is,
map or overlap with) corresponding chemical moieties within the
fitted compound, W is the weight of the corresponding hypothesis
feature spheres. This value is fixed to 2.0 in HYPOGEN-generated

Figure 7. a) An optimal docked pose of inhibitor 365 (34 % inhibitory at 10 mm) into the binding pocket of DPP IV
(PDB code: 2G63, resolution 2.00 �), numbers indicate represent interatomic distances in �; b) and c) Hypo32/8
fitted against inhibitor 365, with and without exclusion spheres, respectively.
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models. disp is the distance between the center of a particular
pharmacophoric sphere (feature centroid) and the center of the
corresponding superimposed chemical moiety of the fitted com-
pound; tol is the radius of the pharmacophoric feature sphere
(known as Tolerance, equals to 1.6 � by default). S ACHTUNGTRENNUNG(disp/tol)2 is the
summation of (disp/tol)2 values for all pharmacophoric features
that successfully superimpose corresponding chemical functionali-
ties in the fitted compound.[53–55]

The third term, the configuration cost, penalizes the complexity of
the hypothesis. This is a fixed cost, which is equal to the entropy
of the hypothesis space. The greater the number of features (a
maximum of five) in a generated hypothesis, the higher the entro-
py, with a subsequent increase in this cost. The overall cost (total
cost) of a hypothesis is calculated by summing the three cost fac-
tors. However, error cost is the main contributor to total cost.

CATALYST-HYPOGEN also calculates the cost of the null hypothesis,
which presumes that there is no relationship in the data and that
experimental activities are normally distributed about their mean.
Accordingly, the greater the difference from the null hypothesis
cost (residual cost, Table 3), the more likely that the hypothesis
does not reflect a chance correlation.[53–57] In a successful automatic
modeling run, CATALYST� ranks the generated models according
to their total costs.[53–55]

An additional approach to assess the quality of CATALYST-HYPO-
GEN pharmacophores is to crossvalidate them using the Cat-
Scramble program implemented in CATALYST.[57, 76] This validation

procedure is based on Fisher’s randomization test.[76] In this valida-
tion test, we selected a 95 % confidence level, which instructs CAT-
ALYST to generate 19 random spreadsheets by the Cat-Scramble
command. Subsequently, CATALYST-HYPOGEN is challenged to use
these random spreadsheets to generate hypotheses using exactly
the same features and parameters used in generating the initial
unscrambled hypotheses.[90] Success in generating pharmaco-
phores of comparable cost criteria to those produced by the origi-
nal unscrambled data reduces the confidence in the training com-
pounds and the unscrambled original pharmacophore models.[57, 76]

Clustering of the generated pharmacophore hypotheses

Due to the large number of resulting pharmacophores (320
models) and to avoid overwhelming GFA/MLR with a large number
of input descriptors, it was decided to reduce the number of input
pharmacophore descriptors through the following: 1) only pharma-
cophore models of Fisher scrambling significance � 85 % were
considered for subsequent QSAR modeling, and 2) the surviving
models (280 hypotheses) were clustered into 56 groups and the
best model was selected to represent its cluster in subsequent
QSAR modeling. The clustering process was conducted as follows:
every five models were clustered together utilizing the hierarchical
average linkage method available in CATALYST. The models gener-
ated from each training set were clustered separately, for example,
all 80 pharmacophore models generated from training subset A
were clustered into 16 groups. To select the best representative
pharmacophores from each cluster, each group member was fitted
against the collected compounds (1–358 ; Figure 1, and table A in
the Supporting Information) employing the “best” fit option imple-
mented in CATALYST, and their fit values [calculated from equa-
tion (5)] were regressed against the corresponding experimental
bioactivities. The highest-ranking models, based on their F-statistic,
were selected to represent their corresponding clusters in subse-
quent QSAR modeling. Table 3 shows the pharmacophoric features
of selected representative binding hypotheses, combined with
their CATALYST success criteria.

QSAR modeling

A subset of 287 compounds from the total list of inhibitors
(Figure 1, and table A in the Supporting Information) was utilized
as a training set for QSAR modeling. However, as it is essential to
access the predictive power of the resulting QSAR models on an
external set of inhibitors, the remaining 71 molecules (approxi-
mately 20 % of the dataset) were employed as an external test
subset for validating the QSAR models. The test molecules were se-
lected as follows: the inhibitors (1–358 ; Figure 1, and table A in
the Supporting Information) were ranked according to their IC50

values, subsequently, every fifth compound was selected for the
test set starting from the high-potency end. This selection consid-
ers the fact that the test molecules must represent a range of bio-
logical activities similar to that of the training set. The selected test
inhibitors are marked with asterisks in table A in the Supporting In-
formation.

The logarithm of measured 1/IC50 (nm) values was used in QSAR,
thus correlating the data linearly to the free energy change. The
chemical structures of the inhibitors were imported into CERIUS2
as standard 3D single conformer representations in SD format.
Subsequently, different descriptor groups were calculated for each
compound employing the C2.DESCRIPTOR module of CERIUS2 (100
terms). The calculated descriptors included various simple and

Figure 8. Oral glucose tolerance test of compound 386 (gemifloxacin) using
male Balb/c mice. a) Various doses of compound 386 were administered in-
traperitoneally to Balb/c mice and glucose (2 g kg�1, p. o.) was given 30 min
latter (0 min). Plasma glucose concentration was measured at the indicated
time. (^) Control (normal saline) ; (&) gemifloxacin 18 mg kg�1; (~) gemi-
floxacin 36 mg kg�1; (� ) gemifloxacin 72 mg kg�1. Data are represented as
mean �S.E.M. (n = 5–8) ; b) AUC of the glucose concentration curve (shown
in panel a) was calculated and displayed. Percent inhibition values for each
treatment (in parentheses) were generated from the AUC data. (*) P value
<0.05 versus control, (**) P value <0.01 versus control.
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valence connectivity indices, electrotopological state indices, single
point quantum-mechanical descriptors (with the AM1 model), and
other molecular descriptors (for example, logarithm of partition co-
efficient, polarizability, dipole moment, molecular volume, molecu-
lar weight, molecular surface area, etc…).[77] Furthermore, the fit
values of training compounds against the representative pharma-
cophores (using the Best-fit option in CATALYST and equation 5)[45]

were added as additional molecular descriptors.

Genetic function approximation (GFA) was employed to search for
the best possible QSAR regression equation capable of correlating
variations in the biological activities of training compounds with
variations in their molecular descriptors, that is, multiple linear re-
gression modeling (MLR). GFA techniques rely on the evolutionary
operations of “crossover and mutation” to select optimal combina-
tions of descriptors (that is, chromosomes) capable of explaining
bioactivity variation among training compounds from a large pool
of possible descriptor combinations. Each chromosome is associat-
ed with a fitness value that reflects how good it is compared to
other solutions. The fitness function employed herein is based on
Friedman’s ‘lack-of-fit’ (LOF).[77]

Our preliminary diagnostic trials suggested the following optimal
GFA parameters: Explore linear equations at mating and mutation
probabilities of 50 %; population size = 500; number of genetic iter-
ations = 30000 and LOF smoothness parameter = 1.0. However, to
determine the optimal number of explanatory terms (QSAR de-
scriptors), we decided to scan and evaluate all possible QSAR
models resulting from 8 to 28 explanatory terms.

All QSAR models were validated employing leave one-out cross-
validation (r2

LOO), bootstrapping (r2
BS),[57, 58] and predictive r2 (r2

PRESS)
calculated from the test subsets. The predictive r2

PRESS is defined as:

r2
PRESS ¼ SD-PRESS=SD ð6Þ

Where SD is the sum of the squared deviations between the bio-
logical activities of the test set and the mean activity of the train-
ing set molecules, PRESS is the squared deviations between pre-
dicted and actual activity values for every molecule in the test set.
The descriptor-scanning procedure identified equation 1 as the
best equation. Figure 2 shows the plots of experimental versus
fitted (training set) and predicted (testing set) bioactivities calculat-
ed from the best QSAR equation.

Addition of exclusion volumes

To account for the steric constraints of the binding pocket we de-
cided to decorate Hypo4/10 and Hypo32/8 with exclusion volumes
employing HIPHOP-REFINE module of CATALYST. HIPHOP-REFINE
uses inactive training compounds to construct excluded volumes
that resemble the steric constraints of the binding pocket. It identi-
fies spaces occupied by the conformations of inactive compounds
and spaces free from the active inhibitors. These regions are then
filled with excluded volumes.[45]

As each pharmacophore resembles a separate binding mode, it
was decided to select two separate training subsets for construct-
ing appropriate exclusion spheres around Hypo32/8 and Hypo4/
10, namely, subsets E and F, respectively (Table 5).

In HIPHOP-REFINE the user defines how many molecules must
map completely or partially to the hypothesis via the Principal and
MaxOmitFeat parameters. Active compounds are normally assigned
MaxOmitFeat parameter of zero and a principal value of two such
that the software is instructed to map them against all the phar-

macophoric features of a particular hypothesis. On the other hand,
inactive compounds are allowed to miss one or two features by as-
signing them a MaxOmitFeat of one (or two) and a principal value
of zero.

However, in the case of compounds that seem to be inactive be-
cause of steric clashes within the binding pocket, they were as-
signed MaxOmitFeat and principal values equal to zero. This com-
bination instructs HIPHOP-REFINE to force inactive compound(s) to
map all the pharmacophoric features of the binding model, and
therefore permits the software to identify spaces occupied by
excess structural fragments/features of such compounds and fill
them with exclusion volumes.[45, 91]

To identify an appropriate activity/inactivity cutoff value, we decid-
ed to consider compounds that have anti-DPP IV affinities � 3.5
logarithmic cycles from the most potent active inhibitor (214,
IC50 = 0.3 nm) as an appropriate activity/inactivity threshold. Ac-
cordingly, inhibitors of IC50 values � 948 nm were regarded as ‘‘ac-
tives’’ and were assigned principal and MaxOmitFeat values of two
and zero, respectively. On the other hand, inhibitors of IC50>

948 nm were considered inactive and were assigned principal
values of zero.[45] However, each inactive compound was carefully
evaluated to assess whether its low potency is attributable to miss-
ing one or more pharmacophoric features, that is, compared to
active compounds, or related to possible steric clashes within the
binding pocket, or due to both factors (that is, the MaxOmitFeat
parameter was set to 0, 1, or 2). HIPHOP-REFINE was configured to
allow a maximum of 100 exclusion spheres to be added to the
generated pharmacophoric hypotheses. This represents the default
value for the number of exclusion volumes in HIPHOP-REFINE.
Table 5 shows the training compounds employed in this step and
their corresponding principal and MaxOmitFeat parameters.

In silico screening of the NCI and drug databases for new
DPP IV inhibitors

Hypo32/8 and Hypo4/10 combined with their respective excluded
volumes were employed as 3D search queries against two multi-
conformer structural databases, namely, the national cancer insti-
tute list of compounds (NCI database, includes 238,819 com-
pounds)[45] and our in-house multiconformer database of estab-
lished drug molecules (includes 1490 compounds) via the “best
flexible search” option in CATALYST. Only NCI hits were filtered
based on Lipinski’s and Veber’s.[85] . Whereas we left the established
drug hits without postscreening. The remaining hits (1498 mole-
cules) were fitted against Hypo32/8 and Hypo4/10 using the “Best-
Fit” option in CATALYST. Subsequently, their fit values together
with other relevant molecular descriptors were substituted in
equation 1 to determine their predicted anti-DPP IV activities and
35 high ranking compounds were acquired and tested in vitro.

Docking experiment

The chemical structure of 282 (NCI0294730) and 386 (gemifloxacin)
were docked into the binding site of DPP IV (PDB code: 2G63, res-
olution = 2.00 �)[88] employing FRED software (FRED, version 2.1.2
Users’ Manual, 2006).[89] This docking engine takes a multiconform-
er database of the ligand(s) intended for docking, a target protein
structure, a box defining the active site of the protein based on
the co-crystallized ligand, and several optional parameters as
input. The ligand conformers and protein structure are treated as
rigid during the docking process. FRED’s docking strategy is to ex-
haustively score all possible positions of each ligand in the active
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site.[89] The exhaustive search is based on rigid rotations and trans-
lations of each conformer. Therefore, it avoids sampling issues as-
sociated with stochastic conformation-generation methods. The
conformational space of the docked compounds was explored
using OMEGA software. The software settings that best reproduced
the co-crystallized poses of several ligand-DPP IV complexes (2G5T,
2G63, 1RWQ, 2AJL, 1X70, and 2HHA)[73, 88, 92–94] were employed in
the docking experiment.

In vitro DPP IV enzyme inhibition assay

Each hit compound was dissolved in DMSO and diluted with Tris
buffer (pH 7.5) for subsequent enzymatic assay. The assay was con-
ducted using DPP IV drug discovery kit (Biomol, Germany), which
is based on the cleavage of chromogenic substrate (H-Gly-Pro-
para-Nitroaniline) by DPP IV to release para-nitroaniline (pNA) mea-
sured at 405 nm. Briefly, recombinant DPP IV was diluted in Tris
buffer (pH 7.5, 50 mm) to a final enzymatic solution of 17.34 mU
mL�1. Subsequently, 15 mL aliquots of the enzymatic solution were
pipetted into clear microplate wells and then appropriate volumes
of the hits’ stock solutions were added, completed to 50 mL with
Tris buffer, and incubated at 37 8C for 20 min. Finally, 50 mL of the
substrate solution (0.20 mm in Tris buffer) was added to each well.
The plate was read at 405 nm in a microplate reader (BioTek, USA)
and the rate of reduction of substrate absorbance was evaluated
over 10 min and compared to a negative control (enzymatic solu-
tion without inhibition). A standard DPP IV inhibitor (P32/98 from
Biomol, Germany) was employed as positive control.

Oral glucose tolerance test (OGTT) in mice

The animal experiments comply with the Guide for the Care and
Use of Laboratory Animals published by the US National Institutes
of Health.[95] OGTT was performed on male BALB/c mice 25–30 g
(~12 weeks old), obtained from Jordan University animal house,
Jordan. The mice were housed in temperature controlled cages
(20–22 8C) with a 12 h light–dark cycle, and given free access to
water and formulated diet. Control and treated groups were
matched for body weight in all experiments. Gemifloxacin (LG Life
Sciences, Korea) was dissolved in sterile normal saline. Three doses
of gemifloxacin were used; 18, 36, and 72 mg kg�1. Mice were food
deprived for 6 h at the end of the dark cycle before glucose toler-
ance tests were performed. The drug was intraperitoneally admin-
istered 30 min prior to oral glucose load evaluation. Controls were
given normal saline i.p. The volume load was 10 mL/g body weight.
Oral glucose was administered at 2 g kg�1 of body weight, there-
after, glucose levels were measured from tail bleeds with a gluc-
ometer (Arkray, Inc. , Japan) at 0, 15, 30, 60, and 120 min after the
oral glucose challenge.

Data are presented as means �S.E.M. Statistical comparisons were
performed using a one-way ANOVA or unpaired Student’s t test. In
all cases, p <0.05 is considered statistically significant.
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