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10 Abstract Inhibition of the enzyme acetylcholinesterase

11 (AChE) has been shown to alleviate neurodegenerative

12 diseases prompting several attempts to discover and opti-

13 mize new AChE inhibitors. In this direction, we explored

14 the pharmacophoric space of 85 AChE inhibitors to iden-

15 tify high quality pharmacophores. Subsequently, we

16 implemented genetic algorithm-based quantitative struc-

17 ture–activity relationship (QSAR) modeling to select

18 optimal combination of pharmacophoric models and 2D

19 physicochemical descriptors capable of explaining bioac-

20 tivity variation among training compounds (r268 ¼ 0:94,

21 F-statistic = 125.8, r2LOO¼ 0:92, r2PRESS against 17 external

22 test inhibitors = 0.84). Two orthogonal pharmacophores

23 emerged in the QSAR equation suggesting the existence of

24 at least two binding modes accessible to ligands within

25 AChE binding pocket. The successful pharmacophores

26 were comparable with crystallographically resolved AChE

27 binding pocket. We employed the pharmacophoric models

28 and associated QSAR equation to screen the national

29cancer institute list of compounds. Twenty-four low

30micromolar AChE inhibitors were identified. The most

31potent gave IC50 value of 1.0 lM.

32

33Keywords Acetylcholinesterase inhibitors �

34Pharmacophore modeling � Quantitative structure–activity

35relationship � In silico screening

36Introduction

37Alzheimer’s disease (AD) is a progressive neurodegenera-

38tive disorder that primarily affects the elderly population and

39is considered to be responsible for the majority of dementia

40cases in people aged 65 or older [1]. This disease is charac-

41terized by numerous symptoms such as memory and lan-

42guage impairment, cognitive dysfunction and behavioral

43disturbances (i.e., depression, agitation and psychosis),

44which become progressively more severe [2]. Currently

45there is no cure for this disorder, thus there is a real need for

46novel molecular templates for AD therapy [1–3].

47The fact that this neuropathology is associated with cen-

48tral cholinergic deficit [4] suggests that it can be ameliorated

49by increasing CNS acetylcholine (ACh) concentrations

50through inhibiting the metabolic enzyme acetylcholinester-

51ase (AChE) [5]. In fact all current pharmacological treat-

52ments of AD, i.e., tacrine, donepezil, rivastigmine and

53galantamine, are cholinesterase inhibitors. However, most of

54these present many side effects prompting continuous

55interest in developing new AChE inhibitors [6–8].

56Acetylcholinesterase (EC 3.1.1.7) is a serine protease

57that hydrolyzes the neurotransmitter ACh with high cata-

58lytic activity [11, 12]. AChE is found mainly at neuro-

59muscular junctions and cholinergic brain synapses, where

60its activity serves to terminate synaptic transmission. It
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61 belongs to carboxyl esterase family of enzymes [6–10].

62 X-ray structures of AChE co-crystallized with various

63 ligands provided insights into the essential structural ele-

64 ments and motifs central to its catalytic mechanism and

65 mode of ACh processing. The active site of AChE com-

66 prises 2 subsites—the anionic site and the esteratic subsite.

67 [13–19] The anionic subsite accommodates the positive

68 quaternary amine of ACh as well as other cationic sub-

69 strates and inhibitors. Interestingly, the cationic moieties of

70 different substrates are not bound by a negatively-charged

71 amino acid in the enzymatic anionic site, but rather by

72 interaction with 14 aromatic residues that line the gorge

73 leading to the active site [15, 17, 20–23].

74 Inhibition of AChE leads to accumulation of ACh in the

75 synaptic cleft and results in neuroactivation [17]. However,

76 irreversible inhibitors of AChE (e.g., organophosphates)

77 are rather toxic [24], while slowly reversible inhibitors

78 (e.g., carbamates esters) have been successfully used for

79 medical purposes (e.g., physostigmine for the treatment of

80 glaucoma) [25–27].

81 However, reversible inhibitors seem to be most desirable

82 for treating AD with minimal toxic side effects. They

83 occupy the esteratic site for short periods of time (seconds

84 to minutes) and are used to treat a range of central nervous

85 system diseases. For example, tetrohydroaminoacridine

86 (THA) and donepezil are FDA-approved to improve cog-

87 nitive function in AD. Rivastigmine is also used to treat

88 Alzheimer’s and Lewy body dementia, and pyridostigmine

89 bromide is used to treat myasthenia gravis [25–27].

90 The continued interest in designing new reversible

91 AChE inhibitors and lack of ligand-based computer-aided

92 drug discovery efforts prompted us to explore the possi-

93 bility of developing ligand-based three-dimensional (3D)

94 pharmacophore (s) integrated within self-consistent quan-

95 titative structure–activity relationship (QSAR) model. The

96 pharmacophore model(s) can be used as 3D search query to

97 discover new AChE inhibitory scaffolds that can be used as

98 new leads for development into anti-AD drugs.

99 Weconstructedhundredsof reasonablebindinghypotheses

100 for AChE inhibitors by using CATALYST package [28].

101 Subsequently,QSARmodelingwas used as competitionarena

102 to select the best orthogonal binding pharmacophores and

103 combine them with other molecular descriptors to yield rea-

104 sonable predictive QSAR model capable of explaining bio-

105 activity variationwithin a large collection ofAChE inhibitors.

106 The selected pharmacophores were validated by evaluating

107 their abilities to classify a list of compounds as active or

108 inactive through receiver-operating characteristic (ROC)

109 curves. Subsequently, they were employed to screen the

110 national cancer institute (NCI) list of compounds.

111 Wepreviously reported the use of this innovative approach

112 towards the discovery of new inhibitory leads against glyco-

113 gen synthase kinase-3 [27], bacterial MurF [29], protein

114tyrosine phosphatase [30], DPP IV [31], hormone sensitive

115lipase [32], b-secretase [33], influenza neuraminidase [34],

116cholesteryl ester transfer protein [35], CDK1 [36],Heat Shock

117Protein [37], glycogen phosphorylase [38], Rho Kinase [39],

118nitric oxide synthase (iNOS) inhibitors [40], Ca2?/calmodu-

119lin-dependent protein kinase II [41], fungal N-myristoyl

120transferase [42], renin inhibitory [43], and peroxisome pro-

121liferator-activated receptor c activators [44].

122Materials and methods

123Molecular modeling

124Software and hardware

125Pharmacophore and QSAR modeling studies were per-

126formed using CATALYST (HYPOGEN module) [28],

127CERIUS2 [45] and Discovery Studio [46] software suites.

128Structure drawing was performed employing ChemDraw

129Ultra 7.0 [47].

130The performed modeling workflow involves several

131subsequent steps: (1) Drawing the chemical structures of the

132training compounds using ChemDraw software package. (2)

133Generation of multi-conformations for training compounds

134using CONFIRM module of CATALYST. (3) Pharmaco-

135phore exploration performed using HYPOGEN module of

136CATALYST. (4) QSAR analysis performed using QSAR

137and DESCRIPTORS modules within CERIUS software

138package. (5) Validating the capacity of the QSAR-selected

139pharmacophores as three-dimensional search queries by

140plotting their ROC curves. This step was done employing the

141‘‘Best flexible search’’ option implemented in CATALYST

142followed by plotting the output using one of our own scripts

143written within MATLAB environment. (6) The selected

144pharmacophores were used as search queries to find prom-

145ising in silico hits. It remains to be mentioned that we used

146Ligandfit docking engine within Discovery Studio suit for

147docking purposes and Discovery Studio environment to

148visualize and report our findings.

149Data Set

150The structures of 85 AChE inhibitors (1–85, Table A under

151supplementary material) were collected from recently

152published literature [48–51]. Although the inhibitors were

153gathered from eight separate articles, they were bioassayed

154employing the same methodology. The bioactivities were

155expressed as the concentrations of the test compounds that

156inhibited the activity of AChE by 50 % (IC50 in nM). The

157logarithms of IC50 values were used in QSAR and phar-

158macophores analyses in order to correlate the data linear to

159the free energy change.
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160 The two-dimensional (2D) chemical structures of the

161 inhibitors were imported into CATALYST, converted into

162 corresponding standard 3D structures and energy mini-

163 mized to the closest local minimum using the molecular

164 mechanics CHARMm force field in CATALYST. The

165 conformational space of each inhibitor was explored

166 adopting the ‘‘best conformer generation’’ option within

167 CATALYST [28]. A conformational ensemble was gen-

168 erated for each training molecule with an energy threshold

169 of 20 kcal/mol from the local minimized structure, and a

170 maximum limit of 250 conformers per molecule.

171 Automatic generation and assessment of pharmacophoric

172 hypotheses via catalyst

173 All 85 molecules with their associated conformational

174 models were rearranged into a worksheet. The biological

175 data of the inhibitors were reported with an ‘‘Uncertainty’’

176 value of 3, which means that the actual bioactivity of a

177 particular inhibitor is assumed to be within an interval

178 ranging from one-third to three-times the reported bioac-

179 tivity value of that inhibitor [56, 57]. Subsequently, four

180 structurally diverse training subsets were carefully selected

181 from the collection for pharmacophore modeling: sets I, II,

182 III and IV (Table B under supplementary material).

183 The selected training sets were utilized to conduct 32

184 modeling runs to explore the pharmacophoric space of

185 AChE inhibitors (Table C under Supplementary Materials).

186 The exploration process included altering interfeature

187 spacing parameter (1 and 3 Å) and the maximum number

188 of allowed features in the resulting pharmacophore

189 hypotheses and in presence or absence of exclusion vol-

190 umes as in Table C under Supplementary Materials.

191 Pharmacophore modeling employing CATALYST pro-

192 ceeds through three successive phases: the constructive

193 phase, subtractive phase and optimization phase (see

194 CATALYST Modeling Algorithm under section SM-1 in

195 Supplementary Materials) [28–44, 56, 57]. When generat-

196 ing binding hypotheses, CATALYST attempts to minimize

197 a cost function consisting of three terms: Weight cost,

198 Error cost and Configuration cost (see CATALYST Cost

199 Analysis in Assessment of Generated Binding Hypotheses

200 in section SM-2 under Supplementary Materials).

201 Additionally, CATALYST cross-validates pharmacophore

202 models using Cat-Scramble algorithm. This validation pro-

203 cedure is based on Fischer’s randomization test [61]. In this

204 validation test; we selected a 95 % confidence level that

205 instructs CATALYST to generate 19 random spreadsheets by

206 the Cat-Scramble command. Subsequently, CATALYST-

207 HYPOGEN is challenged to use these random spreadsheets to

208 generate hypotheses using exactly the same features and

209 parameters used in generating the initial unscrambled

210 hypotheses. Success in generating pharmacophores of

211comparable cost criteria to those produced by the original

212unscrambled data reduces the confidence in the training

213compounds and the unscrambled original pharmacophore

214models [28, 61, 62].

215QSAR modeling

216The successful models (259) were clustered into 25 groups

217utilizing the hierarchical average linkage method available in

218CATALYST. Subsequently, individual representatives were

219arbitrary selected to represent their corresponding clusters in

220subsequent QSAR modeling. Table 1 shows the statistical

221criteria of representative pharmacophores including their

222pharmacophoric features, success criteria and differences

223from corresponding null hypotheses (see CATALYST Cost

224Analysis in Assessment of Generated Binding Hypotheses in

225section SM-2 under SupplementaryMaterials). The table also

226shows the corresponding Cat. Scramble confidence levels for

227each representative pharmacophore.

228For subsequent QSAR modeling, a subset of 68 com-

229pounds from the total list of collected inhibitors (1–85,

230Table A under Supplementary Materials) was utilized as a

231training set for QSAR. The remaining 17 molecules (ca.

23220 % of the dataset) were employed as an external test

233subset for validating the QSAR models. The test molecules

234were selected by ranking the collected inhibitors (1–85,

235Table A in Supplementary Materials) according to their

236IC50 values, and then selecting every fifth compound for

237the test set starting from the high-potency end.

238The chemical structures of the inhibitors were imported

239into CERIUS2 as standard 3D single conformer represen-

240tations in SD format. Subsequently, different descriptor

241groups were calculated for each compound employing the

242C2.DESCRIPTOR module of CERIUS2. The calculated

243descriptors included various simple and valence connec-

244tivity indices, electro-topological state indices and other

245molecular descriptors (e.g., logarithm of partition coeffi-

246cient, polarizability, dipole moment, molecular volume,

247molecular weight, molecular surface area, energies of the

248lowest and highest occupied molecular orbitals, etc.) [45].

249Additionally, the training compounds were fitted (using the

250Best-fit option in CATALYST) against the representative

251pharmacophores (25 models, Table 1), and their fit values

252were added as additional descriptors. The fit value for any

253compound is obtained automatically via equation (D) under

254SM-1 in Supplementary Materials [28].

255Genetic function approximation (GFA) was employed to

256search for the best possible QSAR regression equation

257capable of correlating the variations in biological activities

258of the training compounds with variations in the generated

259descriptors, i.e., multiple linear regression modeling

260(MLR). The fitness function employed herein is based on

261Friedman’s ‘lack-of-fit’ (LOF) [45].
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262 Diagnostic trials suggested the following optimal GFA

263 parameters: explore linear, quadratic and spline equations

264 at mating and mutation probabilities of 50 %; population

265 size = 500; number of genetic iterations = 30,000 and

266 LOF smoothness parameter = 1.0. However, to determine

267 the optimal number of explanatory terms (QSAR descrip-

268 tors), it was decided to scan and evaluate all possible

269 QSAR models resulting from 5 to 25 explanatory terms.

270 All QSAR models were validated employing leave one-

271 out cross-validation (r2LOO), bootstrapping (r2BS) and pre-

272 dictive r2 (r2PRESS) calculated from the test subsets. The

273 predictive r2PRESS is defined as:

r2PRESS ¼ SD� PRESS/SD ð1Þ

275275Where SD is the sum of the squared deviations between the

276biological activities of the test set and the mean activity of

277the training set molecules, PRESS is the squared deviations

278between predicted and actual activity values for every

279molecule in the test set.

280Receiver operating characteristic (ROC) curve analysis

281QSAR-selected pharmacophore models (i.e., Hypo6/1 and

282Hypo 7/1) were validated by assessing their abilities to

Table 1 Statistical success criteria of representative pharmacophore hypotheses

RUNa Hypothesesb Features Cost Rd Cat. scramblee (%)

Config. Total Null Residualc

1 6f HBA, Hbic, 2xRingArom, 2xEVg 6.2 145.8 252.9 107.1 0.82 90

7 HBA, Hbic, RingArom, PosIon, EVg 6.2 146.9 252.9 106 0.81 90

5 2 HBA, Hbic, RingArom, PosIon 6.2 149.9 252.9 103 0.79 95

9 HBD, Hbic, RingArom, HBA 6.2 166.8 252.9 86.1 0.73 95

10 3 HBD, Hbic, RingArom, PosIon, 8xEV 16.2 129.9 265.9 136 0.97 95

6 HBD, Hbic, RingArom, PosIon, 8xEV 16.2 132.4 265.9 133.5 0.96 95

8 HBD, Hbic, RingArom, HBA, 9xEV 16.2 133.2 265.9 132.7 0.97 95

9 HBD, Hbic, RingArom, HBA, 8xE 16.2 133.3 265.9 132.6 0.96 95

10 HBD, Hbic, RingArom, HBA, 4xE 16.2 133.4 265.9 132.5 0.95 95

13 7 HBD, 2xHbic, RingArom 16.8 140.6 265.9 125.3 0.93 95

17 1 HBD, 2xHbic, RingArom, 7xEV 16.3 78.4 167.1 88.7 0.99 95

3 HBD, 2xHbic, RingArom, 6xEV 16.3 81.6 167.1 85.5 0.97 95

10 HBA, 2xHbic, RingArom, PosIon 16.3 87.4 167.1 79.7 0.94 95

18 2 HBA, 2xHbic, RingArom, PosIon 15.5 81.1 167.1 86 0.97 95

19 1 HBA, 2xHbic, RingArom, PosIon 13.0 78.4 167.1 88.7 0.977 90

25 3 HBD, 2xHbic, RingArom 17.8 153 360.9 207.9 0.97 95

5 HBD, 2xHbic, RingArom 17.8 154.2 360.9 206.7 0.96 95

26 7 HBD, 2xHbic, RingArom 16.7 152.9 360.9 208 0.96 95

8 2xHBD, Hbic, HBA 16.7 153.6 360.9 207.3 0.96 95

10 HBD, 2xHbic, RingArom 16.7 154.4 360.9 206.5 0.96 95

28 6 HBA, 2xHbic, RingArom, PosIon, 3xEV 13.7 151.6 360.9 209.3 0.96 95

29 9 2xHBD, Hbic, RingArom 17.8 156.4 360.9 204.5 0.96 95

30 8 HBD, 2xHbic, RingArom 16.8 153.3 360.9 207.6 0.96 95

31 2 HBA, HBD, 2xHbic, PosIon 14.6 146.8 360.9 214.1 0.97 95

6 HBD, 2xHbic, RingArom, PosIon 14.6 151.2 360.9 209.7 0.96 95

a Correspond to runs in Table C under supplementary materials
b High ranking representative hypotheses (in their corresponding clusters, see ‘‘QSAR modeling’’ section)
c Difference between total cost and the cost of the corresponding null hypotheses (see section SM-2 under Supplementary Materials)
d Correlation coefficients between pharmacophore-based bioactivity estimates (calculated from equation (C) in SM-1 under Supplementary

Materials) and bioactivities of corresponding training compound (subsets in table B under supplementary material)
e Fisher confidence level calculated employing the Cat. Scramble methods
f Ranking of hypotheses is as generated by CATALYST in each automatic run
g Bolded pharmacophores appeared in the best QSAR equations
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283 selectively capture diverse AChE inhibitors from a large

284 testing list of actives and decoys.

285 The testing list was prepared as described by Verdonk

286 and co-workers [64, 65]: Decoys were selected by assess-

287 ing the distance (D) between any two molecules (e.g., i and

288 j) based on three one-dimensional properties: (1) the

289 number of hydrogen-bond donors (NumHBD); (2) number

290 of hydrogen-bond acceptors (NumHBA) and (3) count of

291 nonpolar atoms (NP, defined as the summation of Cl, F, Br,

292 I, S and C atoms in a particular molecule). For each active

293 compound in the test set, the distance to the nearest other

294 active compound is assessed by their Euclidean Distance

295 (Eq. (2)):

296 The minimum distances are then averaged over all active

297 compounds (Dmin). Subsequently, for each active com-

298 pound in the test set, around 25 decoys were randomly

299 chosen from the ZINC database [66]. The decoys were

300 selected in such a way that they did not exceed Dmin dis-

301 tance from their corresponding active compound.

302 To diversify active members in the list, we excluded any

303 active compound having zero distance [D(i, j)] from other

304 active compound(s) in the test set. Active testing com-

305 pounds were defined as those possessing anti-AChE IC50

306 values ranging from 1.3 nM to 9.5 lM. The test set

307 included 35 active compounds and 868 ZINC decoys.

308 The testing list (903 compounds) was screened by each

309 particular pharmacophore employing the ‘‘Best flexible

310 search’’ option implemented in CATALYST, while the

311 conformational spaces of the compounds were generated

312 employing the ‘‘Fast conformation generation option’’

313 implemented in CATALYST. Compounds missing one or

314 more features were discarded from the hit list. In-silico hits

315 were scored employing their fit values as calculated by

316 Eq. (D) in Supplementary Materials.

317 The ROC curve analysis describes the sensitivity (Se or

318 true positive rate, Eq. (3)) for any possible change in the

319 number of selected compounds (n) as a function of (1-Sp). Sp

320 is defined as specificity or true negative rate (Eq. (4)) [63, 65]

Se ¼
Number of Selected Actives

Total Number of Actives
¼

TP

TPþ FN
ð3Þ

322322 Sp ¼
Number of Discarded Inactives

Total Number of Inactives
¼

TN

TN þ FP
ð4Þ

324324 where, TP is the number of active compounds captured by

325 the virtual screening (VS) method (true positives), FN is

326 the number of active compounds discarded by the VS

327method, TN is the number of discarded decoys (presum-

328ably inactives), while FP is the number of captured decoys

329(presumably inactive) [63, 65, 66].

330If all molecules scored by a VS protocol with sufficient

331discriminatory power are ranked according to their score (i.e.,

332fit values), starting with the best-scored molecule and ending

333with themolecule that got the lowest score,most of the actives

334will have a higher score than the decoys. Since some of the

335actives will be scored lower than decoys, an overlap between

336the distribution of active molecules and decoys will occur,

337which will lead to the prediction of false positives and false

338negatives. [63, 65]. The selection of one score value as a

339threshold strongly influences the ratio of actives to decoys and

340therefore the validation of a VS method. The ROC curve

341method avoids the selection of a threshold by considering all

342Se andSppairs for each score threshold [63, 65].AROCcurve

343is plotted by setting the score of the activemolecule as the first

344threshold.Afterwards, the number of decoyswithin this cutoff

345is counted and the corresponding Se and Sp pair is calculated.

346This calculation is repeated for the active molecule with the

347second highest score and so forth, until the scores of all actives

348are considered as selection thresholds.

349The ROC curve representing ideal distributions, where no

350overlap between the scores of active molecules and decoys

351exists, proceeds from the origin to the upper-left corner until

352all the actives are retrieved and Se reaches the value of 1. In

353contrast to that, the ROC curve for a set of actives and decoys

354with randomly distributed scores tends towards the Se = 1-

355Sp line asymptoticallywith increasing number of actives and

356decoys [63, 65]. The success of a particular VSworkflow can

357be judged from the following criteria (shown in Table 3):

358(1) Area under the ROC curve (AUC) [63, 65, 67]. In an

359optimal ROC curve an AUC value of 1 is obtained;

360however, random distributions cause an AUC value

361of 0.5. VS that performs better than a random

362discrimination of actives and decoys retrieve an

363AUC value between 0.5 and 1, whereas an AUC

364value lower than 0.5 represents the unfavorable case

365of a VS method that has a higher probability to assign

366the best scores to decoys than to actives[63, 65].

367(2) Overall Accuracy (ACC) describes the percentage of

368correctly classified molecules by the screening pro-

369tocol. Testing compounds are assigned a binary score

370value of zero (compound not captured) or one

371(compound captured) [63, 65, 67].

Dði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNumHBDi � NumHBDjÞ
2 þ ðNumHBAi � NumHBAjÞ

2 þ ðNPi � NPjÞ
2

q

ð2Þ
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372 (3) Overall specificity (SPC): describes the percentage of

373 discarded inactives by the particular VS workflow.

374 Inactive test compounds are assigned a binary score

375 value of zero (compound not captured) or one

376 (compound captured) regardless to their individual

377 fit values [63, 65, 67].

378 (4) Overall True Positive Rate (TPR or overall sensitiv-

379 ity): describes the fraction percentage of captured

380 actives from the total number of actives. Active test

381 compounds are assigned a binary score value of zero

382 (compound not captured) or one (compound captured)

383 regardless to their individual fit values [63, 65, 67].

384 (5) Overall False Negative Rate (FNR or overall per-

385 centage of discarded actives): describes the fraction

386 percentage of active compounds discarded by the VS

387 method. Discarded active test compounds are

388 assigned a binary score value of zero (compound

389 not captured) or one (compound captured) regardless

390 to their individual fit values [63, 65, 67].

391 In silico screening for new AChE inhibitors

392 Hypo6/1 and Hypo7/1 were employed to screen the NCI

393 structural database. The screening was done employing the

394 ‘‘Best Flexible Database Search’’ within CATALYST.

395 Captured hits were filtered according to Lipinski’s [68] and

396 Veber’s [69] rules. Remaining hits were fitted against the

397 two pharmacophores using the ‘‘best fit’’ option within

398 CATALYST. The fit values together with the relevant

399 molecular descriptors of each hit were substituted in the

400 optimal QSAR Eq. (5). The highest ranking molecules

401 based on QSAR predictions were acquired and tested

402 in vitro. Table 5 shows active hits and their QSAR-pre-

403 dictions and experimental bioactivities.

404 In vitro experimental studies

405 Materials

406 All of the chemicals were purchased from Sigma–Aldrich (St.

407 Louis, MO, USA) including electric eel AChE (type-VI-S, EC

408 3.1.1.7), acetylthiocholine iodide (ATCI), 5,50dithiobis-(2-

409 nitrobenzoic acid) (DTNB), Tris–HCl, bovine serum albumin

410 (BSA), NaCl, MgCl2.6H2O, standard inhibitor galanthamine

411 (G1660), water and dimethyl sulfoxide (DMSO) for bioanal-

412 ysis. Tested hits were kindly freely provided by the NCI.

413 Preparation of hit compounds for in vitro assay

414 The tested compounds were provided as dry powders in

415 variable quantities (5–10 mg). They were initially dis-

416 solved in DMSO to give stock solutions of 100 lM.

417Subsequently, they were diluted to the required concen-

418trations with Tris buffer (pH 7.4) for enzymatic assay.

419Quantification of AChE inhibitory activity

420in a spectrophotometric assay

421Acetylcholinesterase activities were measured through

422Ellman’s colorimetric method with a slight modification

423[70]. In a typical run, AChE was dissolved in Tris–HCl

424buffer (50 mM, pH 8.0) to give a final solution of 0.22 U/

425mL. Subsequently, 1 lL of the enzyme solution was added

426to each well of a 96-well plate. Thereafter, a predetermined

427volume of each tested compound solution was added to

428each well to yield final concentrations of 0.1, 1, 10,

429100 lM. Subsequently, Tris–HCl buffer was added (pH

4308.0, 50 mM with 0.1 % w/v bovine serum albumin) to each

431well to reach a total of 40 lL and allowed to stand for

43210 min at room temperature. Subsequently, DTNB (50 lL,

4330.075 mM) and ATCI (10 lL, 1.5 mM) were added to

434wells. Color development was measured spectrophoto-

435metrically at k 412 nm using microplate reader (BioTek

436ELx800, USA) at a rate of one measurement per minute

437over 15 min period. Positive (galanthamine) and negative

438(no inhibitors) controls were tested. The reaction rates were

439compared and the percent inhibition due to the presence of

440tested compounds was calculated. All samples were

441assayed in at least duplicate measurements. In general, the

442amount of DMSO was kept below 1 % in the assay.

443Results and discussion

444CATALYST-HYPOGEN utilizes a collection of molecules

445with activities ranging over a number of orders of magnitude

446for automatic pharmacophore construction. It generates

447binding hypotheses (pharmacophores) by using the geo-

448metric localization of the chemical features present in the

449molecules to explain the variability of bioactivity. CATA-

450LYST-HYPOGEN defines a 3D array of a maximum of five

451chemical features common to active training molecules that

452provides relative alignment for each input molecule consis-

453tent with binding to certain proposed common binding site.

454The chemical features can be hydrogen bond donors and

455acceptors (HBD and HBA), aliphatic and aromatic hydro-

456phobes (Hbic), positive and negative ionizable (PosIon and

457NegIon) groups and aromatic planes (RingArom). CATA-

458LYST pharmacophores have been used as 3D queries for

459database searching and in 3D-QSAR studies [27, 29–40].

460Data mining and conformational coverage

461The literature was surveyed to collect many structurally

462diverse AChE inhibitors (1–85, see Table A under
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463 supplementary materials) [48–55]. The conformational

464 space of each inhibitor was extensively sampled utilizing

465 the poling algorithm of CATALYST [55]. Proper confor-

466 mational exploration is necessary for pharmacophore gen-

467 eration and pharmacophore-based search procedures as

468 both are known for their sensitivity to inadequate confor-

469 mational sampling [34].

470 Exploration of AChE pharmacophoric space

471 The training inhibitors were selected in such a way that

472 they were assayed by the same procedure (compounds 1–

473 85, Table A in Supplementary Materials). Obviously, sta-

474 tistical consistency necessitates that QSAR and pharma-

475 cophore modeling are based on training compounds

476 assayed by a single bioassay procedure [27, 29–40].

477 The pharmacophoric space of AChE inhibitors was

478 explored through 32 pharmacophore generation automatic

479 runs performed on four carefully selected training subsets:

480I, II, III and IV (Table B under supplementary Materials).

481The training compounds were selected to guarantee wide

482structural diversity with bioactivities extended over more

483than 3.5 logarithmic cycles. To ensure sufficient molecular

484diversity within training subsets, member compounds were

485selected in such a way that each structural cluster of the

486collected compounds was sampled at least once in each

487training subset. However, some compounds were repeat-

488edly selected in training subsets because of their critical

489pharmacophoric features. Training subsets were selected in

490such a way that differences in AChE inhibitory activities

491among their member compounds are primarily attributable

492to the presence or absence of pharmacophoric features

493[e.g., HBA, HBD, Hbic or ring aromatic (RingArom)]

494rather than steric shielding and/or bioactivity-enhancing or

495-reducing auxiliary groups (e.g., electron donating or

496withdrawing groups). A special emphasis was given to the

497structural diversity of the most-active compounds in each

498training subset because of their significant influence on the

499extent of the evaluated pharmacophoric space during the

500constructive phase of HYPOGEN algorithm (see CATA-

501LYST Modeling Algorithm under section SM-1 in Sup-

502plementary Materials) [28, 57–60, 71].

503HYPOGEN was instructed to explore only 4- and

5045-featured pharmacophores and ignore models of lesser

505number of features (as shown in Table C in Supplementary

506Materials). The advantage of this restriction is to narrow

507the investigated pharmacophoric space while allowing

508good representation of the feature-rich nature of AChE

509inhibitors. We previously implemented similar pharmaco-

510phore exploration strategies against a multitude of targets

511[27–44].

512Eventually, 259 pharmacophore models resulted from

51332 automatic HYPOGEN runs. Fortunately, all generated

514pharmacophores illustrated C90 % Cat.Scramble signifi-

515cance (see ‘‘Automatic generation and assessment of

516pharmacophoric hypotheses via catalyst’’ section) [28, 61,

51762]. These were subsequently clustered and representative

518models were arbitrary selected from each cluster (total of

51925 models, Table 1) to represent their clusters in sub-

520sequent QSAR modeling.

521QSAR modeling

522Clearly from Table 1, representative pharmacophore

523models shared comparable binding features and excellent

524statistical criteria. Emergence of numerous statistically

525comparable pharmacophore hypotheses suggests the ability

526of AChE ligands to assume multiple binding modes within

527the binding pocket. Accordingly, it is rather hard to select a

528particular binding pharmacophore as a single representa-

529tive of ligand binding. This point combined with the fact
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Fig. 1 Experimental versus (a) fitted (68 compounds, r2LOO ¼ 0:917),

and (b) predicted (17 compounds, r2PRESS ¼ 0:0:841) bioactivities

calculated from the best QSAR model Eq. (5). The solid lines are the

regression lines for the fitted and predicted bioactivities of training

and test compounds, respectively, whereas the dotted lines indicate

the 1.0 log error margins
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530 that pharmacophoric models are limited by steric shielding

531 and bioactivity-enhancing or reducing auxiliary groups [27,

532 29–44], prompted us to employ classical QSAR analysis to

533 search for the best combination of pharmacophore(s) and

534 other 2D descriptors capable of explaining bioactivity

535 variation across the whole list of collected inhibitors (1–85,

536Table A under Supplementary Materials). We employed

537GFA and MLR QSAR (GFA–MLR–QSAR) analysis to

538search for an optimal QSAR equation(s) [77, 80].

539The fit values obtained by mapping representative

540hypotheses (25 models) against collected AChE inhibitors

541(1-25, Table A under Supplementary Materials) were

N

N+

O

(A)

(B) (C)

(D)

Fig. 2 a Docked structure of training compound 32 (IC50 = 1.3 nM,

Table A under Supplementary Materials) into AChE (PDB code:

1B41, resolution 2.76 Å
´
, the green line represents hydrogen bonding).

b Pharmacophoric features of Hypo6/1: HBA as green vectored

spheres, Hbic as light blue spheres, RingArom as vectored orange

spheres. c Hypo6/1 fitted against 32. d Chemical structure of 32
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542 enrolled, together with around 100 other physicochemical

543 descriptors, as independent variables in GFA-MLR-QSAR

544 analysis (see ‘‘QSAR modeling’’ section) [27–38, 45, 64].

545 We arbitrarily selected 17 molecules (marked with double

546 asterisks in Table A under Supplementary Materials) as

547 external test molecules for validating the QSARmodels. All

548 QSAR models were cross-validated automatically using the

549 leave-one-out cross-validation in CERIUS2 [45, 64].

550 Equation (5) shows the details of the optimal QSAR

551 model. Figure 1 shows the corresponding scatter plots of

552 experimental versus estimated bioactivities for the training

553 and testing inhibitors.

Log 1=IC50ð Þ ¼ �3:87� 0:17 Molecular Solubilityð Þ
þ 0:60 Number of Rotatable Bondsð Þ
� 1:07 PHIð Þ þ 2:92 JursRNCGð Þ
þ 0:27 Hypo6/1ð Þ þ 0:08 Hypo7/1ð Þ

555555r268¼ 0:94; r2LOO¼ 0:92; F-statistic = 125:8;

r2PRESSð17Þ¼ 0:84
ð5Þ

557557where, r268 is the correlation coefficient against 68 training

558compounds and r2PRESS is the predictive r2 determined for

559the 17 test compounds [45, 64]. The different descriptor

N

N
+

O
HH

(A)

(B) (C)

(D)

Fig. 3 a Docked structure of training compound 35 (IC50 = 1.8 nM,

Table A under Supplementary Materials) into AChE (PDB code:

1B41, resolution 2.76 Å
´
) binding pocket. b Pharmacophoric features

of Hypo7/1: HBA as green vectored spheres, Hbic as light blue

spheres, RingArom as vectored orange spheres, PosIon as red

spheres. c Hypo1/7 fitted against 35. d Chemical structure of 35
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560 coefficients were auto-scaled. JursRNCG is the relative

561 negative charge calculated by dividing the charge of most

562 negative atom by the total negative charge [45]. PHI is

563 molecular flexibility index [45]. Hypo6/1 and Hypo7/1

564 represent the fit values of the training compounds against

565 these two pharmacophores (bolded models in Table 1 and

566 shown in Figs. 2, 3) as calculated from equation (D) under

567 section SM-2 in Supplementary Materials.

568 The contradictory regression slopes associated with the

569 number of rotatable bonds and flexibility index (PHI) in

570 Eq. (5) suggest certain complex role played by molecular

571 flexibility in ligand-AChE binding. However, the overall

572 influence of molecular flexibility seems to be negative, i.e.,

573 on ligand binding, as evident by the larger negative slope

574 associated with PHI. The most probable explanation of this

575 trend is related to the entropic cost of binding. Binding of

576 flexible molecules into AChE binding pocket tend to excise

577 higher entropic cost compared to rigid ligands.

578 The emergence of Molecular Solubility descriptor in

579 combination with negative slope in Eq. (5) suggests that

580 higher water solubility reduces ligand-AChE affinity. This

581 is not unexpected as ligand hydration generally competes

582 with ligand-receptor binding [74–76].

583 Interestingly, QSAR Eq. (5) shows JursRNCG com-

584 bined with a relatively pronounced positive regression

585 coefficient suggesting significant ligand-AChE affinity

586 promoting effects by focused electrophilic centers. The

587 most probable explanation of this trend is related to the fact

588 that electrophilic heterocycles p-stack efficiently against

589complementary electron-rich aromatic side chains of

590amino-acids within the binding pocket of AChE. The cat-

591alytic site of AChE includes several electron-rich aromatic

592rings belonging to Trp439, Tyr337, Phe338 and Phe297 (as

593in Figs. 2, 3).

594On the other hand, emergence of two orthogonal phar-

595macophoric models, i.e., Hypo6/1 and Hypo7/1 of cross-

596correlation r2 = 0.16, in Eq. (5) suggests they represent

597two complementary binding modes accessible to ligands

598within the binding pocket of AChE, i.e., one of the phar-

599macophores explains the bioactivities of some training

600inhibitors while the other explains the remaining inhibitors.

601Figures 2C and 3C show Hypo6/1 and Hypo7/1 and how

602they map 32 (IC50 = 1.3 nM) and 35 (IC50 = 1.8 nM),

603respectively. The X, Y, and Z coordinates of the two

604pharmacophores are given in Table 2. Similar conclusions

605were reached about the binding pockets of other targets

606based on QSAR analysis [27, 29–44].

607To validate the QSAR-selected pharmacophores, we

608subjected them to ROC curve analysis. In ROC analysis,

609the ability of a particular pharmacophore model to cor-

610rectly classify a list of compounds as actives or inactives is

611indicated by the area under the curve (AUC) of the cor-

612responding ROC together with other parameters: overall

613accuracy, overall specificity, overall true positive rate and

614overall false negative rate (see 2.1.5 receiver operating

615characteristic curve analysis under Experimental for more

616details) [63–66]. Table 3 and Fig. 4 show the ROC results

617of our QSAR-selected pharmacophores. Hypo6/1 and

Table 2 Pharmacophoric features and corresponding weights, tolerances and 3D coordinates of Hypo6/1 and Hypo7/1

Model Definition Chemical features

HBA RingArom Hbic RingArom EV1 EV1

Hypo6/1a Weights 2.70 2.70 2.70 2.70

Tolerances 1.60 2.20 1.60 1.60 1.60 1.60 1.60

Coordinates

X -4.59 -4.02 1.55 1.62 -0.88 -2.50 -2.42 -2.43 -7.34

Y 0.19 0.84 0.09 -2.85 -0.12 -0.13 -3.06 -3.04 -0.77

Z -1.48 -4.40 -0.23 -0.85 0.42 0.30 0.33 1.88 1.82

Model Definition Chemical features

HBA Hbic RingArom PosIon EV

Hypo1/7b Weights 2.40 2.40 2.40 2.40

Tolerances 1.60 2.20 1.60 1.60 1.60 1.60

Coordinates

X -4.19 -3.68 -2.38 0.04 0.09 3.42 4.65

Y -0.83 -3.58 1.00 0.97 2.32 0.26 -1.06

Z 0.39 1.60 -0.46 -0.49 2.18 -0.20 2.86

a Hypo6/1: the 6th pharmacophore hypothesis generated in the 1st HYPOGEN run (Table 1)
b Hypo7/1: the 7th pharmacophore hypothesis generated in the 1st HYPOGEN run (Table 1)
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618 Hypo7/1 illustrated good overall performances with AUC

619 values of 71.5 and 89.7 % respectively.

620 To further emphasize the validity of our pharmacophore/

621 QSAR modeling approach, we compared the pharmaco-

622 phoric features of Hypo6/1 and Hypo7/1 and how they map

623 training compounds 32 and 35, respectively, with optimal

624 docked poses of the two compounds. Docking experiments

625were conducted employing LigandFit (as implemented in

626Discovery Studio 2.5) and through default docking settings

627[71]. Figures 2 and 3 show the pharmacophores, docked

628poses and corresponding mapped conformers. By com-

629paring the docked pose of 32 (IC50 = 1.3 nM) within

630AChE with the way it fits Hypo6/1 (Fig. 2), one quickly

631notes the great similarity between the Hypo6/1 and the

632binding interactions within AChE: Mapping the aromatic

633methoxy of 32 with hydrogen bond acceptor (HBA) feature

634in Hypo6/1 (Fig. 2c) corresponds to hydrogen bonding

635interactions connecting this group with the indole NH of

636Trp439 (Fig. 2a). Similarly, mapping the pyridinoindole

637ring system of 32 against two RingArom and a Hbic feature

638(Fig. 2c) correlates with p-stacking interactions resulting

639from squeezing the pyridnoindole ring system within the

640aromatic pouch of the binding pocket comprised from the

641aormatic side chains of Phe297, Phe338 Tyr337, Trp439

642and His447 (Fig. 2a).

643Similar analogy can be concluded by comparing the

644docked pose of 35 (IC50 = 1.8 nM) with fitting against

645Hypo7/1 (Fig. 3): Mapping the protonated pyridinium ion of

64635 against PosIon feature in Hypo7/1 (Fig. 3c) corresponds

647to electrostatic attraction connecting this positive group with

648the carboxylate anion ofAsp74 (Fig. 3a). Likewise,mapping

649the phenolic OH of 35 against HBA feature in Hypo7/1

650(Fig. 3c) seems to correspond to hydrogen bonding inter-

651action connecting the same phenolic group with the amidic

652NHofHis447 (Fig. 3a). Finally, mapping the pyridinoindole

653electron-deficient ring system of 35 against Hbic and Rin-

654gArom features in Hypo7/1 (Fig. 3c) correlates with p-

655stacking interactions against the electron-rich aromatic side

656chains of Tyr337 and Tyr341 (Fig. 3a).

657Clearly from the above discussion, Hypo6/1 and Hypo7/

6581 represent two valid binding modes assumed by ligands

659within AChE catalyst site. Interestingly, these pharmaco-

660phore models point to limited number of critical interac-

661tions required for high ligand-AChE affinity in each of the

662binding modes. In contrast, docked complexes reveal many

663bonding interactions without highlighting critical ones.

664Figures 2a and 3a show only interactions corresponding to

665pharmacophoric features while other binding interactions

666were hidden for clarity.

Table 4 Numbers of captured hits by Hypo6/1, Hypo7/1

Pharmacophore models

3D Databasea Post screening filteringb Hypo6/1 Hypo7/1

NCI Before 46102 14692

After 11282 4319

a NCI: national cancer institute list of available compounds (238,819

structures)
b Using Lipinski’s and Veber’s rules
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Fig. 4 ROC curves of: a Hyp o6/1, b Hypo7/1

Table 3 ROC curve analysis criteria for QSAR-selected

pharmacophores

Pharmacophore

model

ROC–AUC

(%)

ACC

(%)

SPC

(%)

TPR

(%)

FNR

(%)

Hypo6/1 71.5 96.3 98.7 33.3 1.2

Hypo7/1 88.9 96.3 98.1 50 1.9

ROC receiver operating characteristic curve, AUC area under the

curve, ACC overall accuracy, SPC overall specificity, TPR overall

true positive rate, FNR overall false negative rate
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Table 5 In silico hits, their fit values against (Hypo6/1, Hypo7/1), correspondingQSARestimates fromEq. (5) and in vitro anti-cholinesterase activity
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Table 5 continued
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667 In-silico screening and subsequent in vitro evaluation

668 Hypo6/1 and Hypo7/1 were employed as 3D search queries

669 against the NCIs list of compounds (NCI, 238,819 struc-

670 tures). Subsequently, captured hits were filtered using Li-

671 pinski’s [68] and Veber’s [69] rules such that the remaining

672 hits are more amenable for optimization into promising

673 leads. Table 4 summarizes the numbers of captured hits by

674 each pharmacophore before and after filtration based on

675 Lipinski’s and Veber’s rules.

676 The remaining hits were fitted against Hypo6/1 and

677 Hypo7/1 and their fit values, together with other relevant

678 molecular descriptors, were substituted in QSAR equation

679 (5) to predict their anti-AChE bioactivities. The highest-

680 ranking hits were evaluated in vitro against recombinant

681 AChE (Sigma, USA).

682 Initially, tested hits were screened at 100 lM concen-

683 trations, subsequently; compounds showing anti-AChE

684 percentages exceeding 50 % at 100 lM were further

685 assessed to determine their IC50 values at 10 and 1 lM

686 concentrations. The resulting dose–response data were fit-

687 ted using GraphPad Prism. Table 5 shows active hits and

688 their corresponding estimated and experimental anti-AChE

689 bioactivities. The dose–response curves of active hits are

690 depicted in Figure I in the supplementary materials.

691Clearly from figure I and Table 5, the dose–response

692curves of tested inhibitory hits exhibit Hill slope values

693B1.0 and excellent correlation coefficients, which strongly

694suggest their authenticity (i.e., non-promiscuousity) [78,

69579]. To validate our assay conditions and procedure we

696used the AChE standard inhibitor, galanthamine (G1660),

697as standard positive control [72]. The chemical structures

698of the most potent hits, i.e., 86, 89, 102 and 104, were

699validated by proton and 13C NMR spectroscopy as well as

700mass spectrometry. The corresponding spectrums are

701shown in figures II to IX in the supplementary materials.

702Figure 5 shows how active hits 89 and 102 (Table 5) fit

703pharmacophore models Hypo6/1 and Hypo7/1 (Fig. 5a, d),

704respectively, and compares their fitted structures with cor-

705responding docked poses into AChE catalytic pocket

706(Fig. 5b, e). The comparison shows striking resemblance

707between pharmacophore-fitted 89 and 102with their docked

708poses.Moreover, their poses (both pharmacophore-fitted and

709docked) closely resemble the respective poses generated for

710training compounds 32 and 35 in Figs. 2 and 3.

711Mapping the hydroxyl group of 89 against a HBA fea-

712ture in Hypo6/1 (Fig. 5a) agrees with hydrogen bonding

713interaction tying the same hydroxyl with the NH of indole

714side chain of Trp439 (Fig. 5b). Similarly, mapping the

715dibenzofuran ring system of 89 against two RingArom

Table 5 continued

NH2

OO

O

N NH

N
H

OHN

O

OH
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H

N+

H
N

N
H
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a Best-fit values calculated by equation (D) under SM-2 in Supplementary Materials
b Bioactivity values are the average of at least duplicate measurements. The corresponding dose–response curves are shown in figure I under

Supplementary Materials
c Hill Slopes were calculated by GraphPad Prism 5.0
d The structures of these compounds were validated by proton and 13C NMR spectroscopy as well as mass spectrometry. The corresponding

spectrums are shown in figures II to IX in the supplementary materials
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716 features and a Hbic feature in Hypo6/1 (Fig. 5a) corre-

717 sponds to p-stacking and hydrophobic interactions result-

718 ing from squeezing the dibenzofuran with the aromatic

719 pouch of Tyr337, Phe338, Phe297 and His447 (Fig. 5b).

720 All these interactions are reminiscent of those tying 32

721 within the catalytic pocket of AChE (seen in Fig. 2a, c)

722 albeit 89 shows an additional interaction, namely, elec-

723 trostatic attraction connecting the dimethyl-ammonium of

724 89 with the carboxylate of Glu334 (Fig. 5b).

725 Comparably, mapping the methoxy oxygen and pyrroli-

726 dine nitrogen of 102 against HBA and PosIon features in

727 Hypo7/1, respectively (Fig. 5d), agrees with hydrogen

728 bonding and electrostatic attraction interactions connecting

729 themethoxy oxygen and pyrrolidine nitrogen of 102with the

730 peptidic NH of His447 and carboxylate of Asp74, respec-

731 tively (Fig. 5e). Similarly, mapping the indole core of 102

732 against Hbic and RingArom features in Hypo7/1 (Fig. 5d)

733 corresponds to p-stacking and hydrophobic interactions

734 tying this ring system with the aromatic side chains of

735Tyr337, Tyr341 and Trp86 within the catalytic pocket of

736AChE (Fig. 5e). All these interactions seem very similar to

737interactions binding 35 within AChE (Fig. 3) as can be

738judged frommappingHypo7/1 against 35 (Fig. 3c) and from

739the docked pose of 35 with AChE catalytic pocket (Fig. 3a).

740Interestingly, upon comparing the scoring values (essen-

741tially binding energy estimates based on six scoring func-

742tions [71]) of the docked poses of training compounds 32 and

74335 with those of hits 89 and 102, as seen in Table 6, one can

744quickly notice comparable binding energy readouts indi-

745cating comparable binding affinities for these compounds.

746It remains to be mentioned that although QSAR pre-

747diction was rather accurate with some hits, e.g., 86, 89, 92,

74894, 95 96, 101, 106, and 109, it deviated significantly from

749experimental values with other hits (Table 5). We believe

750these errors are because training compounds used in QSAR

751and pharmacophore modeling are significantly structurally

752different from hit molecules, which limits the extrapolatory

753potential of the QSAR equation.

N

HO

O

NH2

HN NH

O

(A) (B) (C)

(D) (E) (F)

Fig. 5 a Hypo6/1 fitted against hit 89 (IC50 = 1.0 lM, Table 5).

b Optimal docked pose of 89 within AChE catalytic site (PDB code:

1B41, resolution 2.76 Å
´
). c Chemical structure of 89. d Hypo7/1

fitted against hit 102 (IC50 = 2.0 lM, Table 5). e Optimal docked

pose of 102 within AChE catalytic site. f Chemical structure of 102
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754 Similarity analysis between training compounds

755 and active hits

756 We employed three library comparison methods imple-

757 mented in Discovery Studio 2.5 to assess the structural

758 similarity/diversity between the modeled compounds (1–

759 85, Table A in Supporting Information) (library B) com-

760 pared with active hits (86–109, Table 5, library A),

761 namely, Murcko assemblies, Bayesian model, and global

762 fingerprints. In Murcko assemblies, the algorithm breaks

763 the ligands of each library into unique occurrences of

764 molecular rings, ring assemblies, bridge assemblies, chains,

765 Murcko assemblies, or any combination of these. Murcko

766 assemblies are contiguous ring systems plus chains that

767 link two or more rings [73] The two libraries are compared

768 using a Tanimoto similarity of the assemblies based on the

769 fragments that are common and unique to each library [46]

770 On the other hand, in the Bayesian model approach, two

771 Bayesian models were built, one to learn library A and one

772 to learn library B. Finally, it scores all ligands using both

773 models. A distance is computed as Eq. (6):

Distance = ScoreAA + ScoreBB - ScoreAB - ScoreBA

ð6Þ

775775where ScoreAA is the average score of library A molecules

776scored by the Bayesian model that learned library A mole-

777cules, while ScoreBB is the average score of library B mol-

778ecules scored by the Bayesian model that learned library B.

779ScoreAB and ScoreBA are the average scores of libraries A

780and B molecules scored by the Bayesian models that learned

781libraries B and A, respectively. The higher the distance, the

782more dissimilar the libraries are [46]. Finally, the global

783fingerprint comparison algorithm generates a global finger-

784print for all ligands in the training list and all ligands in the hits

785list and then computes a Tanimoto similarity coefficient

786between the two libraries [46]. Table 7 shows the results of

787the three similarity/diversity assessment procedures. Clearly,

788the three methods suggest minimal structural similarity

789between modeled AChE inhibitors and our active hits.

790Careful analysis of Lipinski’s properties of our active

791hits shows them to be generally more hydrophilic com-

792pared to modeled compounds (both training and testing

Table 7 Results of similarity analysis between training compounds and active hits

Murcko assembliesa Bayesian modelb Global fingerprintsb,c

Number of total assemblies 59 Average LibA score of library A

ligands

23.98 Number of total global fingerprint bits 1128

Number of common assemblies 0 Average LibB score of library A

ligands

-24.62 Number of common global fingerprint bits 117

Number of assemblies only in

library Ad
19 Average LibA score of library B

ligands

-45.53 Number of global fingerprint bits only in

library A

429

Number of assemblies only in

library Be
40 Average LibB score of library B

ligands

5.89 Number of global fingerprint bits only in

library B

582

Similarity score between the two

libraries

0.00 Bayesian distance between the two

libraries

100.03 Similarity score between the two libraries 0.10

a See ‘‘Similarity analysis between training compounds and active hits’’ section and [73]
b See Sect. 3.7 and [46]
c Done by implementing the fingerprint descriptor FCFC_6, which correspond to functional-class extended-connectivity fingerprint count up to

diameter 6.43
d Library A includes active hits (86–109, Table 5)
e Library B includes all training and testing compounds employed in pharmacophore and QSAR modeling (1–85, Figure A under Supplementary

Materials)

Table 6 The score values for optimal docked poses of 32, 35, 89 and 102 as suggested by LigandFit docking engine. The corresponding docked

poses are shown in Figs. 2, 3 and 5

Compound Scoring functions (kCal/Mol)

Ligscore 1 Ligscore 2 -PLP 1 -PLP 2 JAIN -PMF

32 1.34 2.42 28.73 43.57 6.8 115.12

35 2.71 2.54 22.66 50.51 5.94 99.14

89 3.39 4.84 70.9 70.85 2.57 121.03

102 4.37 5.00 64.32 71.27 4.98 138.92
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793 compounds): The average Lipinsk’s parameters of the

794 collected modeled compounds are as follows: LogP = 3.5,

795 molecular weight = 297.39, HBA = 3.31, HBD = 1.03,

796 number of rotable bonds = 4.09, while the same paramters

797 for our active hits are as follows: LogP = 2.00, molecular

798 weight = 295.18, HBA = 4.5, HBD = 1.96, number of

799 rotable bonds = 4.88.

800 Enhanced hydrophilicity of captured hits mean they are

801 expected to have better pharmacokinetic profiles compared

802 to modeled collected compounds.

803 Conclusions

804 AChE inhibitors are currently considered as potential

805 treatments for neurodegenerative disorders such as AD.

806 The pharmacophoric space of AChE inhibitors was

807 explored via four diverse sets of inhibitors and using

808 CATALYST-HYPOGEN to identify high quality binding

809 model(s). Subsequently, genetic algorithm and MLR ana-

810 lysis were employed to achieve optimal QSAR model

811 capable of explaining anti-cholinesterse bioactivity varia-

812 tion across 85 collected inhibitors. Two orthogonal phar-

813 macophoric models emerged in the QSAR equation

814 suggesting the existence of at least two distinct binding

815 modes accessible to ligands within AChE binding pocket.

816 The QSAR equation and the associated pharmacophoric

817 models were experimentally validated through identifica-

818 tion of several AChE inhibitors retrieved via in silico

819 screening some of which gave micromolar potencies. Our

820 results suggest that the combination of pharmacophoric

821 exploration and QSAR analyses can be useful tool for

822 finding new diverse AChE inhibitors.
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