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7 ABSTRACT: The mammalian target of rapamycin (mTOR)
8 has an important role in cell growth, proliferation, and survival.
9 mTOR is frequently hyperactivated in cancer, and therefore, it
10 is a clinically validated target for cancer therapy. In this study,
11 we combined exhaustive pharmacophore modeling and
12 quantitative structure−activity relationship (QSAR) analysis
13 to explore the structural requirements for potent mTOR
14 inhibitors employing 210 known mTOR ligands. Genetic
15 function algorithm (GFA) coupled with k nearest neighbor
16 (kNN) and multiple linear regression (MLR) analyses were
17 employed to build self-consistent and predictive QSAR models
18 based on optimal combinations of pharmacophores and
19 physicochemical descriptors. Successful pharmacophores were complemented with exclusion spheres to optimize their receiver
20 operating characteristic curve (ROC) profiles. Optimal QSAR models and their associated pharmacophore hypotheses were
21 validated by identification and experimental evaluation of several new promising mTOR inhibitory leads retrieved from the
22 National Cancer Institute (NCI) structural database. The most potent hit illustrated an IC50 value of 48 nM.

1. INTRODUCTION
23 Mammalian target of rapamycin (mTOR) is a serine/threonine
24 kinase and member of the PI3K-related kinase (PIKK) family.1

25 It plays a central role in integrating signals from metabolism,
26 energy homeostasis, cell cycle, and stress response.1,2 Aberrant
27 PI3K/mTOR activation is commonly observed in cancers.3,4

28 mTOR plays an important role in supporting proliferation and
29 cell survival of tumor under metabolic stress conditions.3,4

30 Under hypoxic conditions, mTOR contributes to HIF-1α
31 activation to support tumor cell survival.5 Inhibition of mTOR
32 leads to arrest of mitotic cells in G1 and may eventually result
33 in cell death via apoptosis, possibly through downregulation of
34 cyclin D1 translation.6 Therefore, mTOR is a validated target
35 for cancer treatment.7

36 In addition to cancer, mTOR is involved in other
37 pathogenesis. It is hyperactivated in brains of Alzheimer’s
38 disease patients, and it appears to be accountable for the
39 development of amyloid beta (Aβ) and tau proteins.8,9

40 Furthermore, overstimulation of the mTOR pathway by excess
41 food consumption may be a crucial factor underlying the
42 diabetes.10 mTOR hyperactivation during hyperfeeding leads to
43 insulin desensitization. This results in reduced glucose uptake
44 and glycogen synthesis in liver and muscle and increased
45 gluconeogenesis and glucose release in liver. Mutually, these
46 effects lead to worsening of the hyperglycemia and hyper-
47 insulinemia.10,11

48 The pronounced current interest in developing new mTOR
49 inhibitors as potential agents for treatment of cancer,

50Alzheimer’s disease, and diabetes,1−11 combined with the lack
51of crystallographic structure for mTOR kinase domain
52prompted us to explore the possibility of developing ligand-
53based 3D pharmacophores integrated within self-consistent
54QSAR models. The pharmacophore models can be used as 3D
55search queries to mine 3D libraries for new mTOR inhibitors,
56while the associated QSAR models can be used to predict the
57bioactivities of captured hits and therefore prioritize them for in
58vitro evaluation.
59We previously reported the use of this innovative approach
60toward the discovery of new leads for glycogen synthase kinase
613β,12 β-secretase,13 CDK1,14 β-D-galactosidase,15 glycogen
62phosphorylase,16 rho kinase,17 inducible nitric oxide synthase
63(iNOS),18 and Ca2+/calmodulin-dependent protein kinase II.19

64However, we herein present a new workflow that combines
65linear (MLR) and nonlinear (kNN) modeling approaches for
66better exploration of the bioactive chemical space of mTOR
67 f1inhibitors. Figure 1 shows a schematic representation of the
68overall computational workflow of this novel approach.
69Interestingly, this workflow unveiled new pharmacophoric
70models that allowed us to better understand ligand binding
71into the mTOR binding site. Morover, the new binding models
72were used as three-dimensional search queries to discover new
73nanomolar bioactive hits.
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74 We employed the HYPOGEN module from the CATALYST
75 software package to construct numerous plausible binding
76 hypotheses for mTOR inhibitors.20−32 Subsequently, a genetic
77 function algorithm (GFA) coupled with multiple linear
78 regression (MLR) analysis or k nearest neighbor (kNN)
79 analysis was employed to search for optimal QSAR models.
80 Both approaches yielded QSAR models that combined high-
81 quality binding pharmacophores with other physicochemical
82 molecular descriptors capable of explaining bioactivity variation
83 across a collection of diverse mTOR inhibitors.
84 The resulting pharmacophores were validated by evaluating
85 their abilities to successfully classify a long list of compounds as
86 actives or inactives, that is, by assessing their receiver-operating
87 characteristic (ROC) curves. Subsequent decoration with steric
88 exclusion spheres enhanced their ROC profiles.
89 The resulting sterically refined pharmacophores were used as
90 3D search queries to screen the National Cancer Institute
91 (NCI) virtual molecular database for new mTOR inhibitors.

2. RESULTS AND DISCUSSION

92CATALYST-HYPOGEN utilizes a collection of molecules with
93activities ranging over a number of orders of magnitude for
94automatic pharmacophore construction. HYPOGEN pharma-
95cophores use the geometric localization of the chemical features
96present in the molecules to explain the variability of bioactivity.
97A total of 210 mTOR inhibitors (Figure A and Table A in
98Supporting Information) were used in this study to generate
99different binding pharmacophore hypotheses. The reader is
100advised to see sections SM-2 and SM-3 in Supporting
101Information for full description of HYPOGEN pharmacophore
102modeling algorithm.33,36−39

1032.1. Exploration of mTOR Pharmacophoric Space. The
104literature was investigated to collect as many structurally diverse
105mTOR inhibitors as possible. The collected inhibitors were
106selected in such a way that they were assayed by the same
107procedure (1−210, see Figure A and Table A in Supporting
108Information).20−35 Statistical consistency necessitates that
109QSAR and pharmacophore modeling are based on training
110compounds assayed by a single bioassay procedure.12−19

111The pharmacophoric space of mTOR inhibitors was explored
112through 16 HYPOGEN automatic runs performed on seven
113carefully selected training subsets: A, B, C, D, E, F, and G
114(Table B in Supporting Information).33,36−39 The training
115compounds were selected to guarantee wide structural diversity
116with bioactivities extended over more than 3.5 logarithmic
117cycles. To ensure sufficient molecular diversity within training
118subsets, member compounds were selected in such a way that
119each structural cluster of the collected compounds (Table A,
120Supporting Information) was sampled at least once in each
121training subset. Training subsets were selected in such a way
122that differences in mTOR inhibitory activities are primarily
123attributable to the presence or absence of pharmacophoric
124features (e.g., hydrogen bond acceptor (HBA), hydrogen bond
125donor (HBD), hydrophobic (Hbic), or ring aromatic (Ring-
126Arom)) rather than steric shielding or bioactivity-enhancing or
127-reducing auxiliary groups (e.g., electron-donating or -with-
128drawing groups). A special emphasis was given to the structural
129diversity of the most-active compounds in each training subset
130(Table B in Supporting Information) because of their
131significant influence on the extent of the evaluated pharmaco-
132phoric space during the constructive phase of HYPOGEN
133algorithm.
134HYPOGEN was instructed to explore only four- and five-
135featured pharmacophores and ignore models of lesser number
136of features (as shown in Table C in Supporting Information).
137The advantage of this restriction is to narrow the investigated
138pharmacophoric space while allowing good representation of
139the feature-rich nature of mTOR inhibitors.
140Eventually, 560 pharmacophore models resulted from 56
141automatic CATALYST-HYPOGEN runs, out of which 559
142models illustrated confidence levels ≥90% (Fisher scrambling
143criteria, See section SM-3 in Supporting Information).33,36−39

144These successful models were clustered, and their best 112
145representatives were used in subsequent QSAR modeling.
146Table D in Supporting Information shows the statistical criteria
147of the best representatives.
1482.2. QSAR Modeling. Although pharmacophore models
149provide excellent insights into ligand−receptor recognition and
150binding phenomena, their predictive potential suffer from two
151important pitfalls, namely, (i) they fail to account for the steric
152constraints of binding pockets and (ii) they fail to explain

Figure 1. General computational workflow implemented herein for
discovering novel mTOR inhibitors. Acronyms: GFA, genetic function
approximation; MLR, multiple linear regression; kNN, k nearest
neighbor; ROC, receiver operating characteristic.
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153 bioactivity enhancing or reducing effects associated with
154 auxiliary groups (electron-donating and -withdrawing function-
155 alities). Furthermore, our pharmacophore exploration yielded
156 numerous high-quality models of comparable success criteria
157 (Table D in Supporting Information), which renders selecting a
158 particular binding hypothesis to explain bioactivity variations
159 across all collected mTOR inhibitors rather daunting.
160 Accordingly, we decided to implement QSAR as a competition
161 platform to select the best possible combination of
162 pharmacophores and other molecular descriptors collectively
163 capable of explaining bioactivity variations across collected
164 mTOR inhibitors.
165 We implemented GFA40 as means for selecting different
166 combinations of pharmacophores and molecular descriptors.
167 However, we implemented two separate methodologies to
168 evaluate the ability of the resulting descriptor and pharmaco-
169 phore combinations in explaining bioactivity variations within
170 mTOR inhibitors: (a) MLR analysis and (b) kNN regression.
171 MLR analysis assumes the existence of a linear correlation
172 between molecular descriptors and corresponding bioactiv-
173 ities.12−19 On the other hand, kNN is a nonlinear non-
174 parametric method that predicts a ligand’s bioactivity as
175 distance weighted average of the bioactivities of its k nearest
176 neighbors. The neighborhood is defined based on certain
177 selected descriptors. The nearness is measured by an
178 appropriate distance metric (e.g., a molecular similarity
179 measure).41,42

180 The fit values obtained by mapping 112 representative
181 hypotheses (generated from clustering of pharmacophore
182 hypotheses) against collected inhibitors (1−210) were enrolled
183 together with a selection of 2D descriptors as independent
184 variables in GFA/MLR-based and GFA/kNN-based QSAR
185 analyses.
186 2.2.1. Multiple Linear Regression-Based QSAR Modeling.
187 Equation 1 shows the optimal GFA/MLR-based QSAR model.

f2 188 Figure 2 shows the corresponding scatter plot of experimental
189 versus estimated bioactivities for the training and testing
190 inhibitors.
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192where, n is the number of training compounds, r168
2 is the

193correlation coefficient against 168 training compounds, rLOO
2 is

194the leave-one-out cross-validation correlation coefficient, and
195rPRESS

2 is the predictive r2 determined for 42 randomly selected
196test compounds. Hypo(A-T7-8), Hypo(E-T5-8), and Hypo-
197(G-T2-1) represent the fit values of the training compounds (as
198calculated from equation D in Supporting Information) against
199the corresponding pharmacophore models, as in Tables C and
200 f3f4f5D in Supporting Information. Figures 3, 4 and 5 show the three
201 t1models, while Table 1 shows the X, Y, and Z coordinates of the
202three pharmacophores.
203The remaining descriptors are as follows: SssCH represents
204the count of trivalent CH fragments, while AaN represents the
205count of heterocyclic aromatic nitrogen atoms. JursFNSA1 is a
206fractional negative charged partial surface area obtained by
207dividing the total charge weighted negative surface area by the
208total molecular solvent accessible surface area.
209The statistical criteria of eq 1 have excellent predictive values.
210This model has excellent rLOO

2 and rPRESS
2 values against 42

211compounds randomly selected from an external list.
212The JursFNSA1 descriptor has significant positive regression
213slope. This indicates that ligands with diffuse negative charges
214tend to have higher affinities to mTOR binding pocket. This is
215not unexpected since the putative binding pocket of mTOR
216includes six cationic amino acids, that is, Lys2166, Lys2187,
217Arg2251, Lys2171, Lys2256, and Lys2257 (the former three are
218intimately involved in ligand binding).43−45 Accordingly,
219ligands with pronounced negatively charged centers tend to
220have higher binding affinities to mTOR binding pocket. This
221conclusion is further supported by the appearance of AaN
222combined with positive regression slope, which suggests that
223nitrogen heterocycles promote bioactivity. Heterocyclic nitro-
224gens represent strongly electronegative centers capable of
225electrostatic and hydrogen-bonding interactions with cationic
226side chains of lysine and arginine residues.
227Interestingly, the SssCH descriptor in eq 1 seems to correlate
228with the presence of 2,6-ethylene-bridged morpholine sub-
229stituents in potent ligands, for example, compounds 1−17
230(Figure A and Table A in Supporting Information). In contrast,
231this group is absent from the less active mTOR inhibitors, for
232example, compounds 108−124 (Figure A and Table A in
233Supporting Information). The ethylene bridge stacks at close
234proximity with a hydrophobic moiety within the binding pocket
235leading to the observed trend.43

236The three binding models (Hypo(A-T7-8), Hypo(E-T5-8),
237and Hypo(G-T2-1)) in eq 1 suggest the existence of at least
238three binding modes assumed by inhibitors within the binding
239pocket of mTOR. They correspond nicely with binding
240interactions tying cocrystallized ligands within the highly
241mTOR homologous protein PI3K-γ (Figures 3, 4, and 5).
242Figure 3B shows how pharmacophore model Hypo(A-T7-8)
243maps a potent dual PIK3-γ/mTOR inhibitor compared with its
244cocrystallized structure within the binding pocket of PI3K-γ
245(Figure 3C). Mapping the urea hydrogens with HBD in

Figure 2. Experimental versus predicted bioactivities for the training
compounds (black squares) and testing compounds (pink squares).
Predicted bioactivities calculated from the best MLR-QSAR model eq
1. The solid line is the regression line for the fitted and predicted
bioactivities of training and test compounds, respectively, whereas the
dotted lines indicate ±1.0 logarthmic error margins.
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246 Hypo(A-T7-8) correlates with hydrogen-bonding interactions

247 connecting the same urea hydrogens with the carboxylate of

248 Asp841. Similarly, the less-than-optimal mapping of the meta-

249 substituted pyridine nitrogen against HBA feature in Hypo(A-

250 T7-8) corresponds to a stretched hydrogen-bonding interaction

251 connecting the same atom with the amidic side chain of Gln893

252 (Figure 3C). Finally, mapping the terminal pyridine, benzene

253 linker, and morpholine groups against three HBic features in
254 Hypo(A-T7-8) agrees with hydrophobic interactions anchoring

255these groups with the hydrophobic side chains of Asp836,
256Ile879, Ile831, and Met953(Figure 3C).
257Similarly, Hypo(E-T5-8) maps another ligand cocrystallized
258within PI3K-γ (Figure 4B). Mapping the catechol hydroxyls
259against two HBD features in Hypo(E-T5-8) correlates with
260hydrogen-bonding interactions connecting them to the
261carboxylates of Asp964 and Asp841 (Figure 4C), while
262mapping the chromone carbonyl against a HBA feature in
263Hypo(E-T5-8) seems to agree with a hydrogen-bonding
264interaction connecting this group with the peptidic NH of

Figure 3. Hypo(A-T7-8). (A) Pharmacophoric features of the binding model: HBA as green vectored spheres, HBD as violet vectored spheres, and
Hbic as blue spheres. (B) Hypo(A-T7-8) fitted against PI3K-γ cocrystallized ligand (pdb code 3IBE). (C) The key binding interactions of PI3K-γ
cocrystallized ligand (pdb code 3IBE). (D) The chemical structures of the cocrystallized ligand. (E) HipHop-refined Hypo(A-T7-8) with exclusion
volumes (gray spheres).
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265 Val882 (Figure 4C). Finally, stacking the catechol aromatic ring
266 against the hydrophobic side chain of Ile963 (Figure 4C) nicely
267 agrees with mapping the same aromatic ring against a Hbic
268 feature in Hypo(E-T5-8) (Figure 4B).
269 Finally, Hypo(G-T2-1) seems to encode for another separate
270 binding mode by which ligands fit within mTOR (Figure 5).
271 Figure 5B,C compares the way by which another dual PIK3-γ/
272 mTOR inhibitor maps Hypo(G-T2-1) with the binding
273 interactions tying the same ligand within the PI3K-γ cocrystal-
274 lized complex. Mapping the ligand’s sulfonamide NH2 against a

275HBD feature in Hypo(G-T2-1) correlates with hydrogen
276bonding connecting the same NH2 with the peptidic carbonyl
277oxygen of Ala885. Similarly, mapping the adjacent aromatic ring
278against a RingArom feature in Hypo(G-T2-1) agrees with π-
279stacking interactions anchoring this aromatic ring against the
280indole ring of Trp812. Likewise, the hydrogen-bonding
281interaction connecting the pyrimidine nitrogen atom with the
282peptidic NH of Val882 is encoded in Hypo(G-T2-1) by
283mapping the same heterocyclic nitrogen against a HBA feature.
284Finally, fitting the benzoyl ring of the cocrystallized ligand

Figure 4. Hypo(E-T5-8). (A) Pharmacophoric features of the binding model: HBA as green vectored spheres, HBD as violet vectored spheres, and
Hbic as blue spheres. (B) Hypo(E-T5-8) fitted against PI3K-γ cocrystallized ligand (pdb code 1E8W). (C) The key binding interactions of PI3K-γ
cocrystallized ligand (pdb code 1E8W). (D) The chemical structures of the cocrystallized ligand. (E) HipHop-refined Hypo(E-T5-8) with exclusion
volumes (gray spheres).
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285 against a Hbic feature in Hypo(G-T2-1) corresponds to
286 hydrophobic interactions linking this ring with the hydrophobic
287 side chain of Ile963.
288 Accordingly, the three pharmacophores represent three
289 corresponding binding modes assumed by different ligands

290within the binding pocket of mTOR. Needless to say that
291currently there is no available mTOR crystallographic structure
292in the protein databank, which prompted us to use the highly
293homologous PI3K-γ as an alternative crystallographic model for
294comparison.

Figure 5. Hypo(G-T2-1). (A) Pharmacophoric features of the binding model: HBA as green vectored spheres, HBD as violet vectored spheres, Hbic
as blue spheres, and RingArom as orange vectored spheres. (B) Hypo(G-T2-1) fitted against PI3K-γ cocrystallized ligand (pdb code 4FUl). (C) The
key binding interactions of PI3K-γ cocrystallized ligand (pdb code 4FUl). (D) The chemical structures of the cocrystallized ligand. (E) HipHop-
refined Hypo(G-T2-1) with exclusion volumes (gray spheres).
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295 To further validate our QSAR-selected pharmacophores, we
296 subjected them to ROC curve analysis to assess their abilities to
297 selectively capture diverse mTOR inhibitors from a large list of
298 decoys. The validity of a particular pharmacophore is indicated
299 by the area under the curve (AUC) of the corresponding ROC
300 curve, as well as the overall accuracy, specificity, true positive
301 rate, and false negative rate of the pharmacophore (see SM-4 in
302 the Supporting Information). The ROC performances of the

303three QSAR-selected pharmacophores are excellent with ROC-
304AUC values of 0.935, 0.941, and 0.850 for Hypo(A-T7-8),
305 t2Hypo(E-T5-8), and Hypo(G-T2-1), respectively (Table 2 and
306Figure B in Supporting Information).
3072.2.2. kNN-Based QSAR Modeling. By careful evaluation of
308different descriptors in QSAR model eq 1, we noticed that the
309three selected pharmacophores were moderately collinear with
310an average cross-correlation r2 of 0.72. We believe this pitfall

Table 1. mTOR Based Pharmacophore Models Selected by MLR-QSAR and kNN-QSAR Modeling

chemical features

model definitions HBA HBD Hbic Hbic Exv

Hypo(A-T7-8)a weights 1.91 1.91 1.91 1.91 1.91
tolerances 1.6 2.2 1.6 2.2 1.6 1.6 1.2
coordinates X −4.82 −7.71 0.034 1.43 1.80 −1.16 −6.69

Y −1.03 −1.72 0.071 1.22 −4.04 −1.32 −3.14
Z −3.91 −4.37 5.84 −7.66 9.52 4.12 4.64

chemical features

model definitions HBA HBD HBD Hbic Exv1 Exv2 Exv3

Hypo(E-T5-8)b weights 2.18 2.18 2.18 2.18 2.18 2.18 2.18
tolerances 1.6 2.2 1.6 2.2 1.6 2.2 1.6 1.2 1.2 1.2
coordinates X −2.61 −3.82 1.00 1.30 0.104 2.33 0.156 −3.22 −1.58 5.91

Y −3.29 −4.73 −1.43 0.116 −0.071 1.38 0.100 −5.36 −1.33 −3.83
Z −4.19 −6.52 7.70 −8.82 −5.91 6.88 −2.98 2.73 −5.36 −1.09

chemical features

model definitions HBA HBD RingArom Hbic

Hypo(G-T2-1)c weights 2.59 2.59 2.59 2.59
tolerances 1.6 2.2 1.6 2.2 1.6 1.6 1.6
coordinates X −0.69 1.62 1.06 0.45 1.11 4.04 −3.24

Y 0.69 3.50 −2.43 0.37 0.90 −0.23 −4.36
Z 0.84 0.035 8.51 10.1 3.33 3.37 −2.56

chemical features

model definitions HBA HBD HBD Hbic

Hypo(E-T1-3)d weights 2.18 2.18 2.18
tolerances 1.6 2.2 1.6 2.2 1.6 1.6 2.2
coordinates X −0.44 0.67 7.67 8.72 5.54 −0.44 0.67

Y −0.80 −1.73 −1.52 1.25 −0.18 −0.80 −1.73
Z 0.85 3.52 0.88 0.36 0.64 0.85 3.52

chemical features

model definitions HBA HBD RingArom Hbic

Hypo(C-T2-9)e weights 2.33 2.33 2.33 2.33
tolerances 1.6 2.2 1.6 2.2 1.6 1.6 1.6
coordinates X −0.42 1.46 7.89 9.16 3.33 2.98 −4.51

Y −0.20 −2.47 1.75 0.71 0.81 −1.09 4.65
Z −3.17 −4.24 −0.84 −3.35 −2.49 −0.06 −3.01

chemical features

model definitions HBA HBD RingArom Hbic EV1 EV2 EV3

Hypo(A-T6-8)f weights 2.59 2.59 2.59 2.59 2.18 2.18 2.18
tolerances 1.6 2.2 1.6 2.2 1.2 1.2 1.2 1.2 1.2 1.2
coordinates X −4.34 −1.58 8.18 8.23 −1.34 −1.09 2.98 7.00 −1.20 −7.80

Y 3.13 2.56 0.13 2.46 −1.3 0.63 0.34 5.12 1.89 −2.98
Z 2.44 3.52 0.76 2.65 0.28 −2.00 0.00 6.13 6.27 0.40

aHypo(A-T7-8) corresponds to the pharmacophore model generated by subset A (Table B), HYPOGEN run number 7 (Table C in the Supporting
Information), eighth-ranked model. bHypo(E-T5-8) corresponds to the pharmacophore model generated by subset E (Table B), HYPOGEN run
number 5 (Table C in the Supporting Information), eighth-ranked model. cHypo(G-T2-1) corresponds to the pharmacophore model generated by
subset G (Table B), HYPOGEN run number 2 (Table C in the Supporting Information), first-ranked model. dHypo(E-T1-3) corresponds to the
pharmacophore model generated by subset E (Table B), HYPOGEN run number 1 (Table C in the Supporting Information), third-ranked model.
eHypo(C-T2-9) corresponds to the pharmacophore model generated by subset C (Table B), HYPOGEN run number 2 (Table C in the Supporting
Information), ninth-ranked model. fHypo(A-T6-8) corresponds to the pharmacophore model generated by subset A (Table B), HYPOGEN run
number 6 (Table C in the Supporting Information), eighth-ranked model.
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311 arises from the fact that MLR-based modeling assumes linear
312 relationships between ligands’ descriptors and bioactivities, thus
313 forcing the GFA-based selection process to filter out any
314 descriptors nonlinearly related to bioactivity. This limits the
315 available pool of explanatory descriptors thus increasing the
316 probability of selecting moderately collinear descriptors in the
317 final QSAR model. Needless to say, collinear descriptors can
318 significantly increase prediction errors in MLR-based QSAR
319 models because they tend to reduce signal-to-noise ratio for
320 successful selection of descriptors that best describe response
321 among training lists.46

322 Accordingly, we decided to attempt QSAR modeling using a
323 nonlinear modeling approach. We adopted kNN-based QSAR
324 modeling for this purpose. The kNN-QSAR methodology relies
325 on a distance learning approach such that the activity value of
326 an unknown member is calculated from the activity values of a
327 certain number (k) of nearest neighbors (kNNs) in the training
328 set. The similarity is measured by a distance metric, and in the
329 present study, the Euclidean distance is considered. We
330 implemented the following kNN workflow: (1) calculate
331 Euclidean distances between an unknown object (x) and all
332 the objects in the training set with respect to certain
333 descriptor(s) selected by GFA; (2) select k objects from the
334 training set most similar to object x; (3) calculate the distance-
335 weighted average bioactivities of k objects as predicted
336 bioactivity of x; (4) correlate predicted bioactivities with
337 experimental ones to determine the optimal k value and
338 explanatory descriptors via leave-20% out cross-validation.41,42

t3 339 Table 3 shows the selected descriptors, nearest neighbors,
340 and statistical criteria of the top five kNN-based QSAR models.
341 We selected model number 1 (Table 3) as the best
342 representative for subsequent virtual screening and QSAR-
343 based predictions because it exhibits excellent overall
344 explanatory power with the least number of descriptors and
345 nearest neighbors.41,42 Interestingly, kNN-QSAR model 1
346 unveiled significantly different sets of explanatory descriptors
347 compared with MLR-QSAR (eq 1).

Table 2. ROCa Performances of QSAR-Selected
Pharmacophores and Their Sterically Refined Versions as
3D Search Queries

pharmacophore model
ROCa-
AUCb ACCc SPCd TPRe FNRf

Hypo(A-T7-8) 0.935 0.968 0.979 0.625 0.021
Hypo(E-T5-8) 0.941 0.968 0.978 0.656 0.022
Hypo(G-T2-1) 0.850 0.968 0.972 0.843 0.028
sterically refined
Hypo(A-T7-8)

0.999 0.968 0.982 0.531 0.0177

sterically refined
Hypo(E-T5-8)

0.996 0.968 0.979 0.625 0.021

sterically refined
Hypo(G-T2-1)

0.979 0.968 0.975 0.75 0.025

Hypo(A-T6-8) 0.911 0.968 0.972 0.843 0.028
Hypo(C-T2-9) 0.869 0.968 0.969 0.906 0.030
Hypo(E-T1-3) 0.909 0.968 0.979 0.626 0.021
sterically refined
Hypo(A-T6-8)

0.996 0.968 0.978 0.656 0.021

sterically refined
Hypo(C-T2-9)

0.983 0.968 0.978 0.688 0.022

sterically refined
Hypo(E-T1-3)

0.988 0.968 0.982 0.531 0.0177

aROC, receiver operating characteristic. bAUC, area under the curve.
cACC, overall accuracy. dSPC, overall specificity. eTPR, overall true
positive rate. fFNR, overall false negative rate.

Table 3. Optimal kNN-QSAR Models Including Their
Corresponding Descriptors, Nearest Neighbors, and
Statistical Criteria

statistical criteria

model selected descriptors

number of
nearest

neighbors r2a rLOO
2b rL20%Out

2c

1 Hypo(E-T1-3)d 3 0.97 0.80 0.88
Hypo(C-T2-9)
Hypo(A-T6-8)
sssNe

dssCf

aaaCg

aaSh

2 Hypo(E-T1-3) 3 0.97 0.82 0.89
Hypo(C-T2-9)
Hypo(A-T6-8)
Hypo(A-T1−1)
sssN
dssC
aasCi

aaS
3 Hypo(G-T2-1) 4 0.96 0.82 0.89

Hypo(E-T2-6)
Hypo(C-T2-9)
Hypo(A-T1−9)
sssN
dssC
aasC
aaS

4 Hypo(G-T2−10) 5 0.95 0.84 0.88
Hypo(E-T7−9)
Hypo(C-T1−10)
Hypo(A-T6-8)
ssOj

sCH3
k

aaS
aaaC

5 Hypo(E-T7−9) 7 0.94 0.82 0.88
Hypo(C-T1−10)
Hypo(B-T8−2)
Hypo(A-T6-8)
Hypo(A-T1−1)
dssC
aaS
aaaC
sCH3

aCorrelation coefficient between the predicted and experimental
log(1/IC50) values. bLeave one out cross correlation coefficient.
cLeave 20% out cross correlation coefficient. dPharmacophore names
correspond to their training subsets (Table B), number of
corresponding automatic HYPOGEN run (as in Table C in
Supporting Information) and rank among other pharmacophores
generated in that particular automatic run (Table D in the Supporting
Information). For example, Hypo(E-T1-3) corresponds to the
pharmacophore model generated by subset E (Table B), HYPOGEN
run number 1 (Table D in the Supporting Information), third-ranked
model. eNumber of tertiary amine nitrogens. fNumber of olefinic
carbon atoms. gNumber of quaternary aromatic carbon atoms.
hNumber of aromatic sulfur atoms. iNumber of tertiary aromatic
carbon atoms. jNumber of etheric oxygens. kNumber of methyl
groups.
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Figure 6. Hypo(A-T6-8). (A) Pharmacophoric features of the binding model: HBA as green vectored spheres, HBD as violet vectored spheres, and
Hbic as blue spheres. (B) Hypo(A-T6-8) fitted against PI3K-γ cocrystallized ligand (pdb code 3L17). (C) The key binding interactions of PI3K-γ
cocrystallized ligand (pdb code 3L17). (D) The chemical structures of the cocrystallized ligand. (E) HipHop-refined Hypo(A-T6-8) with exclusion
volumes (gray spheres).
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Figure 7. Hypo(C-T2-9). (A) Pharmacophoric features of the binding model: HBA as green vectored spheres, HBD as violet vectored spheres, and
Hbic as blue spheres. (B) Hypo(C-T2-9) fitted against PI3K-γ cocrystallized ligand (pdb code 3ML8). (C) The key binding interactions of PI3K-γ
cocrystallized ligand (pdb code 3ML8). (D) The chemical structures of the cocrystallized ligand. (E) HipHop-refined Hypo(C-T2-9) with exclusion
volumes (gray spheres).
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Figure 8. Hypo(E-T1-3). (A) Pharmacophoric features of the binding model: HBA as green vectored spheres, HBD as violet vectored spheres, and
Hbic as blue spheres. (B) Hypo(E-T1-3) fitted against PI3K-γ cocrystallized ligand (pdb code 3LJ3). (C) The key binding interactions of PI3K-γ
cocrystallized ligand (pdb code 3LJ3). (D) The chemical structures of the cocrystallized ligand. (E) HipHop-refined Hypo(E-T1-3) with exclusion
volumes (gray spheres).
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348 kNN-QSAR model 1 selected four one-dimensional
349 descriptors encoding for the count of tertiary amines, aromatic
350 sulfurs, and olefinic and aromatic carbon atoms. Moreover, it
351 selected three pharmacophores as additional explanatory
352 descriptors, namely, Hypo(A-T6-8), Hypo(E-T1-3), and
353 Hypo(C-T2-9). Interestingly, many of the descriptors in
354 kNN-QSAR model 1 repeatedly emerged in other kNN-
355 QSAR models, including the same three pharmacophore
356 models, adding further weight to these descriptors.
357 The repeated appearance of the tertiary amine count
358 descriptor in top ranking kNN-QSAR models is suggestive of
359 a significant role played by amine moieties in ligand binding
360 within mTOR probably through electrostatic attraction to
361 acidic amino acid moieties in the binding pocket. The mTOR
362 binding pocket contains two acidic amino acid moieties,
363 Asp2357 and Asp2340.43−45

364 Similarly, the aromatic sulfur and olefinic and aromatic
365 carbon atoms count descriptors probably encode for affinity
366 interactions connecting different training ligands and hydro-
367 phobic moieties within the mTOR binding pocket. mTOR
368 binding site contains several hydrophobic and aromatic
369 moieties capable of π-stacking and hydrophobic interactions
370 with various ligands, including, Ile2163, Ile2185, Ile2237,
371 Ile2356, Met2345, Ala2248, and Tyr2225.43−45

372 The selection of three orthogonal pharmacophore binding
373 models (average cross-correlation r2 of 0.56) in the highest
374 ranking kNN-QSAR model 1 (Table 3) further supports the
375 notion of at least three binding modes assumed by inhibitors
376 within the binding pocket of mTOR proposed by MLR-QSAR

f6f7f8 377 modeling mentioned in the previous section. Figures 6, 7, and 8
378 show Hypo(A-T6-8), Hypo(C-T2-9), and Hypo(E-T1-3) and
379 how they map three cocrystallized ligands within the closely
380 homologous protein PIK3-γ, while Table 1 shows the X, Y, and
381 Z coordinates of the three pharmacophores. Interestingly, the
382 three pharmacophores correspond nicely with binding
383 interactions tying three cocrystallized ligands within the highly
384 mTOR homologous protein analogue PI3K-γ.
385 Figure 6B shows how pharmacophore model Hypo(A-T6-8)
386 maps a potent dual PIK3-γ and mTOR inhibitor compared with
387 the corresponding PIK-3γ cocrystallized structure (Figure 6C).
388 Mapping the terminal aminopyrimidine with HBD in Hypo(A-
389 T6-8) correlates with hydrogen-bonding interactions connect-
390 ing this amine with the carboxylate of Asp836. Similarly,
391 mapping the sulfone oxygen within the cocrystallized ligand
392 against a HBA feature in Hypo(A-T6-8) corresponds with a
393 hydrogen-bonding interaction connecting the same atom with
394 the ammonium Lys802. Moreover, mapping the ligand’s methyl
395 pyrimidine against a HBic feature in Hypo(A-T6-8) agrees with
396 hydrophobic interactions anchoring this group with the
397 hydrophobic side chain of Ile879. Finally, mapping the
398 thiophene ring against a RingArom feature in Hypo(A-T6-8)
399 agrees with sandwiching this ring between the sulfide moieties
400 of Met804 and Met953.
401 A similar analogy can be seen upon comparing the
402 cocrystallized pose of another potent and selective dual PIK3-
403 γ and mTOR inhibitor with the way it maps Hypo(C-T2-9)
404 (Figure 7B,C). Apparently, hydrogen-bonding interactions
405 connecting the pyridone carbonyl and benzylic hydroxyl of
406 the ligand to the ammonium and carboxylate side chains of
407 Lys833 and Asp841, respectively, are represented by mapping
408 the same carbonyl and hydroxyl groups against HBA and HBD
409 features in Hypo(C-T2-9), respectively. Similarly, mapping the
410 terminal benzene ring against a RingArom feature in Hypo(C-

411T2-9) (Figure 7B) correlates with stacking interactions
412anchoring this ring against the peptidic amide joining Asp964
413and Ile963. Finally, mapping the methyl of the methyl-
414aminopyrimidine against a HBic feature in Hypo(C-T2-9)
415(Figure 7B) corresponds to hydrophobic interactions tying this
416methyl with the sulfide side chain of Met953.
417A similar comparison holds upon evaluating the bound pose
418of a third potent dual PIK3-γ/mTOR inhibitor within the
419PI3K-γ binding site with the way it fits Hypo(E-T1-3) (Figure
4208B,C). Mapping the resorcinol hydroxyls against two HBD
421features in Hypo(E-T1-3) correlates with hydrogen bonding
422against the carboxylate side chains of Asp841 and Asp964.
423Comparably, hydrogen bonding connecting the benzofuranone
424carbonyl with the ammonium of Lys883 correlates with
425mapping the same carbonyl against a HBA in Hypo(E-T1-3)
426(Figure 8B,C). Finally, mapping the methylpipyrazine against a
427HBic feature in Hypo(E-T1-3) compares with hydrophobic
428interactions connecting the same group with the hydrophobic
429sulfide side chain of Met804 (Figure 8B,C).
430To further validate our kNN-QSAR-selected pharmaco-
431phores, we subjected them to ROC curve analyses. The three
432pharmacophores showed excellent ROC performances with
433ROC-AUC values of 0.911, 0.869, and 0.909 for Hypo(A-T6-
4348), Hypo(C-T2-9), and Hypo(E-T1-3), respectively (Table 2
435and Figure C in Supporting Information).
4362.3. In Silico Screening and Subsequent in Vitro
437Evaluation. Lack of steric constraints necessary to define the
438size of the binding pocket can render pharmacophore models
439rather promiscuous, that is, they can capture many false positive
440hits. Therefore, we decorated our pharmacophore models with
441appropriate exclusion spheres to resemble sterically inaccessible
442regions within mTOR’s binding site. We employed the
443HipHop-REFINE module of CATALYST47 for this purpose.
444A structurally diverse training subset was selected for HipHop-
445 t4REFINE modeling (Table 4). The training compounds were
446selected in such a way that the bioactivities of inactive members
447are explained by steric clashes within the binding pocket (see
448section 4.1.7 and section SM-5 in Supporting Information for
449more details). Figures 3E, 4E, 5E, 6E, 7E, and 8E show the
450sterically refined versions of the optimal pharmacophores, while
451Table 2 and Figures B and C in Supporting Information
452illustrate their corresponding ROC results. The sterically
453refined versions outperformed their unrefined counterparts,
454indicating significant improvements in their classification power
455upon addition of exclusion spheres.
456We employed the sterically refined versions of optimal
457pharmacophores as 3D search queries to screen the NCI list of
458compounds (238 819 compounds) for new mTOR inhibitors.
459The captured hits were subsequently filtered by Lipinski’s48 and
460Veber’s criteria.49 Remaining hits were fitted against corre-
461sponding pharmacophores (fit values determined by eq D in
462Supporting Information) and their fit values were substituted in
463the MLR-based QSAR model (eq 1) or the kNN-based QSAR
464model (model 1 in Table 3) to determine their predicted
465 t5t6f9f10bioactivities. Tables 5 and 6 and Figures 9 and 10 show the
466highest predicted hits, their QSAR-based predictions, and their
467experimental in vitro bioactivities.
468Out of the 74 highest-ranking hits captured by the MLR-
469selected pharmacophores (eq 1), 53 were found to possess
470>50% anti-mTOR inhibitions at 10 μM prompting us to
471determine their anti-mTOR IC50 values (Table 5). Interest-
472ingly, 26 hits showed IC50 values within nanomolar range, while
473the rest were in the micromolar range. Figure D in Supporting
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474 Information shows how MLR-selected pharmacophores map
475 some of the most potent corresponding hits.
476 The dose−response curves of captured hits exhibit Hill slope
477 values <1.0 and excellent correlation coefficients (Figure E in
478 the Supporting Information), which strongly suggest the
479 authenticity (i.e., nonpromiscuousity) of the inhibitors.52 The
480 NMR spectra and the exact mass of the most potent mTOR
481 inhibitors are depicted in Figures G−L in Supporting
482 Information.
483 On the other hand, out of the 27 highest-ranking hits
484 captured by the kNN-based modeling strategy (Table 6), only 9
485 gave >50% inhibition at 10 μM. Upon further testing, five of
486 them showed IC50 values within nanomolar range while the rest
487 were within the micromolar range. Figure F in Supporting
488 Information shows how kNN-selected pharmacophores map
489 some of their potent hits.
490 These results suggest that MLR-based pharmacophores and
491 QSAR exhibit superior success rate compared with their kNN-
492 based counterparts in capturing potent hits. Still, the two
493 methods seem to complement each other by capturing
494 structurally distinct potent mTOR inhibitors.
495 In conclusion, combining linear and nonlinear modeling
496 strategies provides better coverage of the conformational
497 flexibility within mTOR’s binding pocket and therefore better
498 exploration of the bioactive chemical space of mTOR
499 inhibitors. In fact, we believe this interesting combination of
500 linear and nonlinear modeling methodologies can be
501 implemented to effectively explore ligand chemical space of
502 any other biological target.
503 Finally, to check the validity of our bioassay, we tested the
504 procedure against a standard mTOR inhibitor (PF-
505 04691502).51 The measured IC50 value was found to be 76.8
506 nM, which is within reasonable range to the reported value (4
507 nM).51

5082.4. Similarity Analysis between Training Compounds
509and Active Hits. Careful evaluation of Tables 5 and 6 shows
510discrepancies between experimental and QSAR-predicted
511bioactivities. We believe such prediction errors are due to the
512significant structural dissimilarity between training compounds
513and captured hits. Accordingly, in order to minimize the impact
514of any possible extrapolatory QSAR prediction errors on
515decisions regarding which hits merit subsequent in vitro
516testing,50 we merely employed log(1/IC50) predictions to
517rank the corresponding hits and prioritize subsequent in vitro
518testing. Only the highest ranking hits were acquired for
519experimental validation.
520In order to establish the structural dissimilarity between
521training compounds and captured active hits, we employed
522three library comparison methods implemented in Discovery
523Studio 2.5 to assess structural similarity and diversity between
524training compounds and captured active hits, namely, Murcko
525assemblies, Bayesian model, and global fingerprints.
526In Murcko assemblies, the algorithm breaks the ligands of
527each library into unique occurrences of molecular rings, ring
528assemblies, bridge assemblies, chains, Murcko assemblies, or
529any combination of these. Murcko assemblies are contiguous
530ring systems plus chains that link two or more rings.53 The two
531libraries are compared using a Tanimoto similarity of the
532assemblies based on the fragments that are common and
533unique to each library.38

534On the other hand, in the Bayesian model approach, two
535Bayesian models were built, one to learn library A and one to
536learn library B. Finally, it scores all ligands using both models. A
537distance is computed as eq 2:

= + + +distance scoreAA scoreBB scoreAB scoreBA
538(2)

539where scoreAA is the average score of library A molecules
540scored by the Bayesian model that learned library A molecules,
541while scoreBB is the average score of library B molecules scored
542by the Bayesian model that learned library B. ScoreAB and
543scoreBA are the average scores of libraries A and B molecules
544scored by the Bayesian models that learned libraries B and A,
545respectively. The higher the distance, the more dissimilar the
546libraries are.38

547Finally, the global fingerprint comparison algorithm gen-
548erates a global fingerprint for all ligands in the training list and
549all ligands in the hits list and then computes a Tanimoto
550similarity coefficient between the two libraries.38

551The three methods suggest minimal structural similarity
552 t7between known mTOR inhibitors and captured hits (Tables 7
553 t8and 8), which probably explains the inconsistencies between
554experimental anti-TOR and QSAR predicted bioactivities in
555both MLR- and kNN-based QSAR models.

3. CONCLUSION
556mTOR is currently considered a validated target for cancer
557therapy. The pharmacophoric space of mTOR inhibitors was
558explored via seven diverse training sets of compounds.
559Subsequently, GFA and MLR analysis was employed to access
560an optimal linear QSAR model. Moreover, we implemented a
561GFA-driven kNN-based modeling to access an optimal
562nonlinear QSAR model. Both approaches culminated in
563identification of several binding modes accessible to ligands
564within the mTOR binding site. The resulting QSAR models
565and associated pharmacophores were validated by the
566identification of 62 potent mTOR inhibitors retrieved from

Table 4. The Training Compounds Used for Adding
Excluded Spheres for All QSAR-Selected Pharmacophores
(MLR- and kNN-Selected) Using HipHop-REFINE Module
of CATALYST

compda IC50 (nM) principal value MaxOmitFeatb

40 0.1 2 0
58 0.1 2 0
59 0.1 2 0
29 0.2 2 0
55 0.2 2 0
64 0.2 2 0
20 0.22 2 0
47 0.3 2 0
37 0.6 2 0
43 0.9 2 0
31 500 0 2
108 950 0 2
121 970 0 2
201 1625 0 2
125 1650 0 2
82 3500 0 2
202 5000 0 2
126 7200 0 2
208 7300 0 2

aCompounds numbers are as in Figure A and Table A in Supporting
Information. bMaxOmitFeat: maximum omitted features.
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Table 5. The Captured Hit Molecules with Their Fit Values, Their Corresponding MLR-QSAR Estimates from Eq 1 and Their
in Vitro Bioactivities

hits fit values againstb in vitro anti-mTOR activityc

tested hitsa hit name Hypo(A-T7-8) Hypo(E-T5-8) Hypo(G-T2-1) predicted IC50 (nM) % inhibition at 10 μM experimental IC50 (nM)

211 NCI0032457 0 0 9.82 315.5 100 48.1
212 NCI0162404 0 5.46 8.83 18.5 100 93.9
213 NCI0328098 0 5.70 9.32 4.2 95 161.6
214 NCI0123517 6.81 8.10 0 0.38 100 162.5
215 NCI0348965 0 0 9.55 56.8 100 163.2
216 NCI0294133 5.62 0 9.69 16.1 84 186.8
217 NCI0031278 0 0 10.09 34.9 96 236.5
218 NCI0145408 0 4.18 9.08 16.2 91 245.2
219 NCI0019802 0 4.77 7.50 36.1 100 304.8
220 NCI0288051 0 0 9.92 11.4 100 325.6
221 NCI0045940 7.56 8.21 8.19 13.0 77 339.1
222 NCI0213858 0 5.02 9.55 1.1 100 350.1
223 NCI0291571 0 1.38 9.91 96.1 84 388.2
224 NCI0305180 4.72 7.35 5.90 4.8 95 393.4
225 NCI0205578 6.37 7.67 2.02 42.1 90 402.2
226 NCI0332542 0 5.97 7.75 5.8 88 456
227 NCI0245021 5.20 0 9.30 18.3 92 473.2
228 NCI0205709 0 4.93 9.00 3.45 100 489
229 NCI0137218 7.27 7.99 0 0.52 100 555.8
230 NCI0132098 6.46 8.06 0 0.68 89 689.8
231 NCI0602671 0 6.16 6.81 1.55 85 690.7
232 NCI0045942 4.44 7.81 5.71 25.3 95 705.1
233 NCI0040052 0 1.66 9.81 779.5 88 712.3
234 NCI0066756 0 4.24 8.02 153.0 86 756.4
235 NCI0114564 0 0 9.96 25.5 75 944.3
236 NCI0666767 0 4.08 7.47 10.6 76 986.6
237 NCI0251741 0.068 2.15 9.90 2.03 72 1108
238 NCI0114368 6.26 0 7.85 2.11 85 1202
239 NCI0114442 0 6.74 7.04 9.23 70 1302
240 NCI0084126 0 6.08 8.75 3.56 74 1450
241 NCI0102809 1.26 6.91 9.05 0.67 74 1552
242 NCI0608955 0 5.19 5.60 3.43 66 1563
243 NCI0329251 0 0.011 9.77 2.27 71 1727
244 NCI0205838 0 4.72 9.05 27.1 74 1790
245 NCI0143140 0 0 9.68 31.1 94 1930
246 NCI0185056 0 4.35 9.40 2.07 71 1951
247 NCI0215722 0 4.93 9.38 3.79 62 2059
248 NCI0319992 3.95 7.78 7.65 9.54 62 2315
249 NCI0379471 0.86 7.35 8.25 16.06 69 3327
250 NCI0270062 0 0 10.07 21.12 57 3580
251 NCI0034845 0 0 10.07 1.95 58 3672
252 NCI0118984 0 0 9.38 278.3 59 4126
253 NCI0145409 6.87 0 9.71 4.79 56 4492
254 NCI0665514 0 4.31 7.93 0.97 50 4532
255 NCI0185054 0 2.33 9.44 2.79 66 4596
256 NCI0185055 0 2.90 9.41 0.364 57 4777
257 NCI0366659 0 1.74 9.93 12.06 52 6558
258 NCI0211827 0.79 3.87 9.06 1.158 55 8117
259 NCI0291572 0.002 2.10 9.91 57.5 53 8439
260 NCI0212418 0 6.91 8.98 0.96 52 8774
261 NCI0013793 0 6.20 8.06 105.0 52 9204
262 NCI0134150 0 0 9.93 2.96 52 9271
263 NCI0133679 6.73 7.54 0 0.852 50 9853
264 NCI0665512 0 0 0 22.12 49 >10000
265 NCI0246978 0 0 0 182.6 46 >10000
266 NCI0204099 0 0 0 10369.5 42 >10000
267 NCI0185057 0 1.89 9.57 10.975 41 >10000
268 NCI0294402 5.793 0 9.72 36.8 38 >10000
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Table 5. continued

hits fit values againstb in vitro anti-mTOR activityc

tested hitsa hit name Hypo(A-T7-8) Hypo(E-T5-8) Hypo(G-T2-1) predicted IC50 (nM) % inhibition at 10 μM experimental IC50 (nM)

269 NCI0319041 0.99 7.00 8.04 459.5 36 >10000
270 NCI0185052 0 1.70 9.17 49.8 36 >10000
271 NCI0290649 0 6.08 8.28 29.14 35 >10000
272 NCI0602692 8.68 7.71 9.94 2.44 28 >10000
273 NCI0114361 0 0 9.96 14.60 28 >10000
274 NCI0329253 0 0.91 9.89 7.09 28 >10000
275 NCI0147886 0 7.24 8.36 5.99 25 >10000
276 NCI0328131 0 3.53 8.34 29.95 25 >10000
277 NCI0162537 0 7.94 9.22 0.063 25 >10000
278 NCI0031279 0 0 9.51 119.4 22 >10000
279 NCI0204174 4.35 0 6.77 4.20 20 >10000
280 NCI0608329 0 7.57 5.31 101.0 12 >10000
281 NCI0291569 0.16 1.56 9.89 2.68 11 >10000
282 NCI0045941 3.78 7.65 8.11 21.46 10 >10000
283 NCI0608953 0 5.02 5.61 5.24 9 >10000
284 NCI0609070 7.29 5.67 10.13 0.78 6 >10000
PF-04691502d 100 76.8

aCompound numbers as in Figure 9. bBest-fit values against each binding hypothesis calculated by eq D in Supporting Information. cBioactivity
values are the average of at least duplicate measurements. dPF-04691502 is the standard positive control applied in mTOR inhibitory assay. The
reported IC50 of PF-04691502 is 4 nM.51

Table 6. The Captured Hit Molecules with Their Fit Values, Their Corresponding kNN-QSAR Estimates and Their in Vitro
Bioactivities

hits fit values againstb in vitro anti-mTOR activityc

tested hitsa hit name
Hypo(A-T6-

8)
Hypo(C-T2-

9)
Hypo(E-T1-

3) predicted IC50 (nM) % inhibition at 10.0 μM experimental IC50 (nM)

285 NCI0659390 6.93 7.27 5.64 1.67 100 211
286 NCI0309121 5.01 6.43 7.02 42.82 100 310
287 NCI0603664 6.08 5.89 6.31 2.66 86 815
288 NCI0359466 7.14 7.00 6.72 1.67 95 879
289 NCI0134179 6.52 7.56 6.08 1.67 58 912
290 NCI0153166 4.87 5.94 6.04 42.82 81 1120
291 NCI0353681 6.76 6.27 6.63 2.66 77 2489
292 NCI0067736 6.14 6.58 7.64 3.25 60.5 4800
293 NCI0215649 4.78 5.84 6.80 42.82 71 5711
294 NCI0117269 3.45 7.98 8.30 0.49 47 >10000
295 NCI0109161 6.42 7.54 8.29 0.49 27 >10000
296 NCI0221018 4.62 5.68 6.95 15.96 44 >10000
297 NCI0403440 6.46 8.22 7.96 0.49 22 >10000
298 NCI0375162 8.29 4.68 4.48 6.89 8 >10000
299 NCI0366657 0.65 9.20 8.45 14.58 36 >10000
300 NCI0680410 4.92 6.98 7.08 27.01 29 >10000
301 NCI0672070 1.74 9.24 8.47 4.05 27 >10000
302 NCI0667562 5.78 7.55 8.35 0.49 48 >10000
303 NCI0667561 5.78 7.55 8.35 0.49 42 >10000
304 NCI0063688 6.38 6.43 7.45 2.66 18 >10000
305 NCI0062766 6.33 6.53 6.51 2.66 12 >10000
306 NCI0052105 5.76 8.19 8.07 0.49 7 >10000
307 NCI0038278 7.15 8.53 2.37 9.45 33 >10000
308 NCI0012749 5.04 6.19 7.01 42.82 41 >10000
309 NCI0337610 2.34 9.22 8.45 4.05 16 >10000
310 NCI0332448 1.85 7.60 8.10 13.57 29 >10000
311 NCI0120183 5.92 6.32 5.57 2.60 12 >10000
PF-04691502d 100 76.8

aCompound numbers as in Figure 10. bBest-fit values against each binding hypothesis calculated by eq D in Supporting Information. cBioactivity
values are the average of at least duplicate measurements. dPF-04691502 is the standard positive control applied in mTOR inhibitory assay. The
reported IC50 of PF-04691502 is 4 nM.51
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Figure 9. continued
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567 the NCI structural database. The most potent hit illustrated an
568 anti-mTOR IC50 value of 48 nM.

4. MATERIALS AND METHODS

569 4.1. Molecular Modeling. The HYPOGEN module from
570 the CATALYST software package was employed to construct
571 numerous plausible binding hypotheses for mTOR inhib-
572 itors.20−32 The conformational space of each inhibitor (1−210,
573 Figure A and Table A in Supporting Information) was explored
574 adopting the “CAESAR” option within CATALYST.35,36

575 Detailed experimental and theoretical explanations of pharma-

576cophore modeling and conformational analysis are provided in
577the Supporting Information (section SM-1, SM2, and SM-3).

5784.1.1. Data Set. The structures of 210 mTOR inhibitors

579(Figure A and Table A in Supporting Information) were

580collected from articles published by a single research

581group,20−32 which strongly supports the notion that their in

582vitro bioactivities were determined by a single assay procedure.

583The bioactivities were expressed as the concentration of the test

584compound that inhibited the activity of mTOR by 50% (IC50).
585The logarithm of measured IC50 (nM) values was used in

Figure 9. The chemical structures of the tested highest-ranking mTOR hits predicted by the MLR-QSAR model (eq 1) and associated
pharmacophores.
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Figure 10. continued
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586 pharmacophore modeling and QSAR analysis, thus correlating
587 the data linearly to the free energy change.

588 The chemical structures of the inhibitors were converted into

589 corresponding standard 3D structures and energy minimized to

590 the closest local minimum using the molecular mechanics

591 CHARMm force field. The resulting 3D structures were utilized

592 as starting conformers for conformational analysis for
593 pharmacophore modeling.

5944.1.2. Pharmacophoric Hypotheses Generation. Seven
595structurally diverse training subsets (Table B in Supporting
596Information) were carefully selected from the collected
597compounds for pharmacophore modeling. Each training subset
598was utilized to conduct eight modeling runs to explore the
599pharmacophoric space of mTOR inhibitors. Different hypoth-
600eses were generated by altering the interfeature spacing and the
601number of allowed features in the resulting pharmacophores
602(see Table C in Supporting Information).

Figure 10. The chemical structures of the tested highest-ranking mTOR hits predicted by the kNN-QSAR model 1 and associated pharmacophores.

Table 7. Results of Similarity Analysis between Training Compounds and Active Hits Captured by MLR-QSAR-Selected
Pharmacophores (Hypo(A-T7-8), Hypo(E-T5-8), and Hypo(G-T2-1))

Murcko assemblies Bayesian model global fingerprintsa

number of total assemblies 178 average LibA score of library A ligands 31.33 number of total global fingerprint bits 2088
number of common assemblies 6 average LibB score of library A ligands −37.02 number of common global fingerprint bits 223
number of assemblies only in library Ab 46 average LibA score of library B ligands −93.33 number of global fingerprint bits only in

library A
1025

number of assemblies only in library Bc 126 average LibB score of library B ligands 8.61 number of global fingerprint bits only in
library B

840

similarity score between the two
libraries

0.034 Bayesian distance between the two
libraries

170.29 similarity score between the two libraries 0.107

aDone by implementing the fingerprint descriptor FCFC_6, which correspond to functional-class extended-connectivity fingerprint count up to
diameter 6. bLibrary A list includes all training and testing compounds employed in pharmacophore and QSAR modeling (1−210, Figure A and
Table A in Supporting Information). cLibrary B includes hits captured by MLR-QSAR modeling (211−284, Figure 9 and Table 5).

Table 8. Results of Similarity Analysis between Training Compounds and Active Hits Active Hits Captured by kNN-QSAR-
Selected Pharmacophores (Hypo(A-T6-8), Hypo(C-T2-9), and Hypo(E-T1-3))

Murcko assemblies Bayesian model global fingerprintsa

number of total assemblies 152 average LibA score of library A ligands 28.89 number of total global fingerprint bits 1558
number of common assemblies 3 average LibB score of library A ligands −22.35 number of common global fingerprint bits 148
number of assemblies only in library
Ab

20 average LibA score of library B ligands −67.33 number of global fingerprint bits only in
library A

495

number of assemblies only in library Bc 129 average LibB score of library B ligands 2.75 number of global fingerprint bits only in
library B

915

similarity score between the two
libraries

0.0197 Bayesian distance between the two
libraries

121.33 similarity score between the two libraries 0.095

aDone by implementing the fingerprint descriptor FCFC_6, which correspond to functional-class extended-connectivity fingerprint count up to
diameter 6. bLibrary A list includes all training and testing compounds employed in pharmacophore and QSAR modeling (1−210, Figure A and
Table A in Supporting Information). cLibrary B includes hits captured by kNN-QSAR modeling (285−311, Figure 10 and Table 6).
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603 Eventually, pharmacophore exploration (eight automatic
604 runs, Tables C and D in Supporting Information) culminated
605 in 560 pharmacophore models of variable qualities (See SM-2
606 in Supporting Information for details about CATALYST
607 pharmacophore generation algorithm).33,37

608 4.1.3. Assessment of the Generated Hypotheses. When
609 generating hypotheses, CATALYST attempts to minimize a
610 cost function consisting of three terms: weight cost, error cost,
611 and configuration cost.36,38,39 A total of 559 pharmacophores,
612 out of 560 generated models, were found to possess Fisher
613 confidence values ≥90% (see section SM-3 in Supporting
614 Information). Tables C and D in Supporting Information show
615 the success criteria of representative pharmacophores from each
616 run. Detailed theoretical explanations of CATALYST’s assess-
617 ment of binding hypotheses are provided in SM-3 in the
618 Supporting Information.
619 4.1.4. Clustering of the Generated Pharmacophore
620 Hypotheses. The successful models (559) were clustered into
621 112 groups utilizing the hierarchical average linkage method
622 available in CATALYST. Therefore, closely related pharmaco-
623 phores were grouped in five-membered clusters. Subsequently,
624 the highest-ranking representatives, as judged based on their fit-
625 to-bioactivity correlation r2-values (calculated against collected
626 compounds 1−210), were selected to represent their
627 corresponding clusters in subsequent QSAR modeling (Table
628 D in Supporting Information).
629 4.1.5. Genetic Function Algorithm-Based QSAR Modeling.
630 GFA techniques rely on the evolutionary operations of
631 “crossover and mutation” to select optimal combination of
632 descriptors capable of explaining bioactivity variation among
633 training compounds. GFA operates through a cycle of four
634 stages: (i) encoding mechanism; (ii) definition of a fitness
635 function; (iii) creating a population of chromosomes; (iv)
636 genetic manipulation of chromosomes.40 We implemented a
637 gene-based encoding system. In this scheme, the possible
638 models (chromosomes) differ from one another by the set of
639 independent variables (descriptors) that comprise each model.
640 If the general number of independent variables (descriptors) is
641 equal to P (in this particular case, P = 431 variables
642 corresponding to 112 pharmacophore fit values and 319
643 calculated descriptors, see below), the chromosome corre-
644 sponding to any model consists of a string of P binary digits
645 (bits) called “genes”. Each value in the string represents an
646 independent variable (0 = absent, 1 = present). Each
647 chromosome is associated with a fitness value that reflects
648 how good it is compared with other solutions. The following
649 are important control parameters used in the GFA-based
650 selection of optimal descriptors:

651 • Creating an initial population: The user must specify a
652 number of initial random chromosomes.
653 • Mating population: Mating is an operation during which
654 two parent chromosomes are combined to generate new
655 solutions (offspring).
656 • Mutation operator: This operator modifies any single
657 chromosome with a given probability, which can take
658 values between 0.0 and 1.0. A mutation operator changes
659 one or more bits in the chromosome to its complement.
660 • Maximum number of generations: This is needed for an
661 exit from a basic cycle and completion of the algorithm.40

662 The independent descriptors were generated as follows: The
663 chemical structures of the inhibitors were imported into
664 Discovery Studio (version 2.55) as standard 3D single

665conformer representations in SD format. Subsequently, differ-
666ent descriptor groups were calculated for each compound
667employing the C2.DESCRIPTOR module within Discovery
668Studio. The calculated descriptors were 319 properties that
669included various simple and valence connectivity indices,
670electrotopological state indices, and other molecular descriptors
671(e.g., logarithm of partition coefficient, polarizability, dipole
672moment, molecular volume, molecular weight, molecular
673surface area, energies of the lowest and highest occupied
674molecular orbitals, etc.).38 Furthermore, the training com-
675pounds were fitted (using the Best-fit option in CATALYST)
676against the representative pharmacophores (112 models, Table
677D in Supporting Information), and their fit values were added
678as additional descriptors. The fit value for any compound is
679obtained automatically via eq D, Supporting Information.36

6804.1.5.1. MLR-Based Selection of Descriptors. GFA was
681employed to search for the best possible QSAR regression
682equation capable of correlating the variations in biological
683activities of the training compounds with variations in the
684generated descriptors, that is, MLR modeling. The fitness
685function employed herein is based on Friedman’s “lack-of-fit”
686(LOF). The following GFA parameters were employed: explore
687linear, quadratic, and spline equations at mating and mutation
688probabilities of 50%; population size = 500; number of genetic
689iterations (generations) = 10000; LOF smoothness parameter
690= 0.5. However, to determine the optimal number of
691explanatory terms (QSAR descriptors), it was decided to scan
692and evaluate all possible QSAR models resulting from 4 to 10
693explanatory terms.
694All QSAR models were validated employing leave one-out
695cross-validation (rLOO

2 ), and predictive r2 (rPRESS
2 ) calculated

696from the randomly selected external test subset (see selection
697criteria mentioned earlier).
698Predictive rPRESS

2 is defined as

= −r (SD PRESS)/SDPRESS
2

699(3)

700where SD is the sum of the squared deviations between the
701biological activities of the test set and the mean activity of the
702training set molecules and PRESS is the squared deviations
703between predicted and actual activity values for every molecule
704in the test set.
705A subset of 168 compounds from the total list of inhibitors
706(1−210) was utilized as a training set for QSAR modeling.
707However, since it is essential to assess the predictive power of
708the resulting QSAR models on an external set of inhibitors, the
709remaining 42 molecules (ca. 20% of the data set) were
710employed as an external test subset for validating the QSAR
711models. (Figure A and Table A in Supporting Information).
712The test molecules were selected as follows: the collected
713inhibitors (1−210, Figure A and Table A in Supporting
714Information) were ranked according to their IC50 values, and
715then every fifth compound was selected for the test set starting
716from the high-potency end. In this way, the test molecules
717represent a range of biological activities similar to that of the
718training set.
7194.1.5.2. KNN-Based Descriptor Selection. The kNN-QSAR
720methodology relies on a distance learning approach such that
721the activity value of an unknown member is calculated from the
722activity values of certain number (k) of nearest neighbors
723(kNNs) in the training set. The similarity is measured by a
724distance metric and in the present study the Euclidean distance
725is considered. The standard kNN method is implemented
726through the following workflow: (i) calculate distances between
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727 an unknown object (e.g., x) and all the objects in the training
728 set; (ii) select k objects from the training set most similar to
729 object x, according to the calculated distances; (iii) calculate the
730 activity value of object x as a weighted average of the activities
731 of its kNNs. The best k value has been found empirically to lie
732 between 1 and 5.41,42 In our kNN approach, 20% of the
733 observations are left out of the training set, and their activities
734 are predicted as the weighted average. The process is repeated
735 over five cycles such that in each cycle the selected testing set is
736 different from those for the other cycles. The predicted activity
737 value of each compound is calculated as weighted average of its
738 nearest neighbors using the following formula:

=
∑

∑
‐

‐
y

yd

dx
k i i

k i

nearest neighbors

nearest neighbors739 (4)

740 where yx is the predicted activity of compound x, yi represent
741 the activities of the nearest k-neighbors, and di is the Euclidean
742 distance of the compound from its kNNs. The leave 20%-out
743 cross-validated coefficient is calculated using the formula

= −
∑ −

∑ −
=

=

r
y y

y y
1

( )

( )
x x x

x x
L20%O

2 1
training set 2

1
training set

avg.tr
2

744 (5)

745 where yx is the experimental bioactivity of compound x and
746 yavg.tr is the average bioactivity of training compounds (i.e., after
747 excluding the testing set).
748 GFA was employed to search for the best possible
749 combination of descriptors capable of explaining variation in
750 biological activities of training compounds via reasonable kNN
751 model. The fitness function employed herein is rL20%O

2 . The
752 following GFA parameters were employed: explore a
753 combination of 1−10 descriptors using Gaussian-based random
754 mutation and a mating probability of 80%; population size =
755 100; number of genetic iterations (generations) = 200.
756 4.1.6. ROC Curve Analysis. Successful GFA-MLR or GFA-
757 kNN selected pharmacophore models were validated by
758 assessing their abilities to selectively capture diverse mTOR
759 inhibitors from a large list of decoys employing ROC analysis as
760 described by Verdonk and co-workers.54−56 For each active
761 compound in the testing set, an average of 41 decoys were
762 randomly chosen from the ZINC database.57 See section SM-4
763 in the Supporting Information for detailed experimental and
764 theoretical explanations of ROC analysis.
765 4.1.7. Addition of Exclusion Volumes. To account for the
766 steric constraints of the binding pocket and to optimize the
767 ROC curves of our QSAR-selected pharmacophores, it was
768 decided to add exclusion volumes to the successful GFA-MLR
769 or GFA-kNN selected pharmacophore models employing the
770 HipHop-REFINE module of CATALYST. HipHop-REFINE
771 uses inactive training compounds to add exclusion spheres to
772 resemble the steric constraints of the binding pocket. It
773 identifies spaces occupied by the conformations of inactive
774 compounds and free from active ones. These regions are then
775 filled with excluded volumes.47 More details are provided in the
776 Supporting Information (section SM-5).
777 4.2. Bioassay of Captured Hits. Briefly, recombinant
778 mTOR was purchased from Invitrogen (Carlsbad, CA). The
779 mTOR kinase assays were carried out with the Invitrogen Z′-
780 LYTE kinase assay kit - Ser/Thr 11 peptide. The assay was
781 optimized for use with mTOR as described in the Invitrogen
782 protocol. The mTOR concentration was optimized to obtain
783 the desired percent phosphorylation with an acceptable Z′-

784factor value, which indicates the quality of an assay; Z′-factor
785values of 0.5 or greater classify an assay as excellent. A Z′-factor
786value of 0.74 was obtained at final kinase and ATP
787concentrations of 14 nM and 100 μM, respectively. Tested
788concentrations ranged from 10 nM to 10 μM distributed log-
789linearly across the concentration range, and at least two data
790points from each concentration were collected. The IC50 value
791for each experiment was obtained using nonlinear regression of
792the log(concentration) versus percent inhibition values (Graph-
793Pad Prism 5.0). The assay conditions were validated by running
794positive (PF-04691502) and negative (provided in Z′-LYTE
795Kinase Assay kit) controls.
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