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Mammalian  target  of  rapamycin  (mTOR)  is  a serine/threonine  kinase  and  member  of the  PI3K-related
kinase  (PIKK)  family.  It  plays  a central  role  in  integrating  signals  from  metabolism,  energy  homeosta-
sis,  cell  cycle,  and  stress  response.  Aberrant  PI3K/mTOR  activation  is  commonly  observed  in  diseases
such  as cancer,  diabetes  and  Alzheimer’s  disease.  Accordingly,  we  developed  common  feature  binding
hypotheses  for  a  set  of  6  potent  mTOR  antagonists.  The  generated  models  were  validated  using  receiver
operating  characteristic  (ROC)  curve  analyses.  To  gain  better  insight  into  ligand–mTOR  interactions,  a
harmacophore
irtual Screening
omology model
OC

homology  model  for the  kinase  domain  of  mTOR  was  built  using  the  crystallographic  structure  of PI3K�
as  template.  The  optimal  pharmacophore  model  was  further  improved  based  on detailed  docking  studies
of potent  training  compound  in the homology  model.  The  modified  binding  model  was employed  as  3D
search query  to  screen  our  in-house-built  database  of  established  drugs.  Subsequent  in  vitro  screening
of  captured  hits  showed  that  six  of  them  have  submicromolar  to  low  micromolar  bioactivities,  namely,

sulfam
glyburide,  metipranolol,  

. Introduction

Mammalian target of rapamycin (mTOR) is a serine/threonine
inase and member of the PI3K-related kinase (PIKK) family [1].  It
lays a central role in integrating signals from metabolism, energy
omeostasis, the cell cycle, and the stress response [1,2]. Aber-
ant PI3K/mTOR activation is commonly observed in cancers [3]
nd can result from amplification of, or activating mutations in,
enes encoding the upstream RTKs, components of PI3K, or effector
inases [4]. mTOR plays a key role in supporting tumor cell survival
nd proliferation under metabolic stress conditions by affecting the
quilibrium between gluconeogenesis and glycolysis in response
o the cell energy supply and regulation of glucose transporters
5]. mTOR drives cancer growth by activating the lipid and pro-
ein biosynthesis needed for robust tumor expansion. It is reported
hat mTOR regulates actin reorganization and cancer cell prolifer-
tion [6].  In hypoxic cancer tissue, mTOR participates in HIF-1�
ctivation to support cell survival [7].  Inhibition of mTOR leads to
itotic cells arresting in G1, possibly through down-regulation of
yclin D1 translation, which may  eventually result in cell death
hrough apoptosis [8].  Therefore, mTOR is a validated target for
ancer treatment [9].  In addition to cancer, mTOR contributes in

∗ Corresponding author. Tel.: +962 65355000x23305; fax: +962 65339649.
E-mail address: mutasem@ju.edu.jo (M.O. Taha).

093-3263/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jmgm.2013.02.009
ethizole,  glipizide,  pioglitazone,  and  sotalol.
© 2013  Elsevier  Inc.  All  rights  reserved.

the progression of Alzheimer’s disease (AD). It is hyperactivated
in the brains of AD patients and it seems to be responsible for
the development of amyloid beta (A�)  and tau proteins, which
aggregate and form two  hallmarks of the disease, A� plaques and
neurofibrillary tangles, respectively [10,11]. Over-stimulation of
the mTOR pathway by excess food consumption may  be a crucial
factor underlying the diabetes [12]. mTOR hyperactivation dur-
ing hyperfeeding leads to insulin desensitization. This results in
dampened Akt activation, which translates into reduced glucose
uptake and glycogen synthesis in liver and muscle, and increased
gluconeogenesis and glucose release by the liver. Collectively, these
effects lead to a worsening of the hyperglycaemia and hyperinsuli-
naemia [12].

The great recent interest in developing new mTOR inhibitors as
potential agents for treatment of cancer, AD, and diabetes [1–12],
combined with the lack of crystallographic structure for mTOR
kinase domain, prompted recent efforts to develop correspond-
ing ligand-based QSAR and pharmacophore models [13–15],  albeit
without subsequent implementation in design or discovery (i.e., via
in silico screening) of new mTOR inhibitors.

Accordingly, we were prompted to develop several phar-
macophore models for 6 most potent mTOR  inhibitors. One

of the developed pharmacophores models illustrated excellent
receiver-operating characteristic (ROC) curve analysis. However, to
further understand the optimal pharmacophore model within the
context of ligand–receptor binding interactions into the kinase

dx.doi.org/10.1016/j.jmgm.2013.02.009
http://www.sciencedirect.com/science/journal/10933263
http://www.elsevier.com/locate/JMGM
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmgm.2013.02.009&domain=pdf
mailto:mutasem@ju.edu.jo
dx.doi.org/10.1016/j.jmgm.2013.02.009
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Fig. 1. The structures

inding site of mTOR, we docked the most potent training com-
ound (5, Fig. 1) into a homology model we constructed for mTOR
inase domain. Interestingly, the binding features of the optimal
harmacophore model closely correlated with binding interac-
ions unveiled by docking. Nevertheless, we slightly modified the
ptimal pharmacophore based on information harnessed from the
ocking/homology modeling study.

Finally, we implemented the resulting pharmacophore model
s 3D search query to screen our in-house-built database of estab-
ished drug molecules, to identify mTOR inhibitory hits from drug
pace. Six drug hits illustrated submicromolar to low micromo-
ar anti-mTOR IC50 values. Such hits are expected to be excellent
eads for subsequent optimization because they have established
oxicological and SAR profiles.

. Methods

.1. Pharmacophore modeling

.1.1. Conformational analysis
The conformational space of each inhibitor (1–6) was  explored

dopting the “CAESAR” option within CATALYST [16–18].  Detailed
onformational analysis is provided in the supplementary material
section SM-1).

.1.2. Common feature pharmacophore model generation
We employed the HipHop module [16,19,20] of CATALYST

oftware to construct plausible binding hypotheses for mTOR
ntagonists. Detailed experimental and theoretical explanations
re provided in the supplementary material (section SM-2).

.2. Homology modeling
.2.1. Software and protein sequence
Homology modeling was performed through the web-

ased port of the Automated Comparative Protein Modeling
erver (SWISSMODEL, http://swissmodel.expasy.org//
 training compounds.

SWISS-MODEL.html)  [21]. The resulting homology structure was
assessed using the protein structure verification WHAT-CHECK
[22,23] module of the WHATIF on-line server (http://swift.cmbi.
ru.nl/servers/html/index.html). The model was  visualized on
a personal computer using the DeepView-pdb viewer share-
ware (version 4.1) provided on-line via SWISSMODEL web-site
(http://spdbv.vital-it.ch/). All sequence data were obtained
from the National Center for Biotechnology Information (NCBI,
http://www.ncbi.nlm.nih.gov). The accession numbers for mTOR
and template structure PI3K� are P42345 and O02697, respectively.

2.2.2. Homology modeling steps
SWISS-MODEL [21,24,25] was applied for homology modeling of

mTOR kinase domain applying PI3K� protein bound to wortmannin
(PDB ID = 1E7U) [26] as a template. Several sequential alignments
of 1E7U and mTOR were performed by means of ClustalW via four
scoring matrices (Blosum, Gonnet, Identity and Pam) and differ-
ent gap penalty combinations, as in Table 3. Detailed experimental
homology modeling steps are provided in the supplementary mate-
rial (see section SM-3).

2.2.3. Analysis of the homology models
The resulting homology structures were evaluated employing

the WHAT-CHECK module of the WHATIF on-line server. Table 4
shows the summary outputs of WHAT-CHECK calculated for the
generated homology structures and their consensus votes. See SM-
4 in the supplementary material for more details.

2.3. Docking settings

Docking experiments were conducted employing LigandFit
docking engine [27]. In the current docking experiments, the bind-
ing site was generated from the “Find sites from receptor cavities”

option in DiscoveryStudio2.5 as defined in literature [28]. High-
ranking docked conformers/poses were scored using six scoring
functions: Jain [29], LigScore1, LigScore2 [27,30], PLP1 [31], PLP2
[32], and PMF  [33]. Implemented docking configurations and their

http://swissmodel.expasy.org//SWISS-MODEL.html
http://swissmodel.expasy.org//SWISS-MODEL.html
http://swift.cmbi.ru.nl/servers/html/index.html
http://swift.cmbi.ru.nl/servers/html/index.html
http://spdbv.vital-it.ch/
http://www.ncbi.nlm.nih.gov/
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Table  1
The training list used for pharmacophore modeling of mTOR inhibitors.

Compounds Bioactivities
(IC50, nM)

Principal
value

MaxOmitFeat Best fit values
against Hypo1

1 10 2 0 6.00
2 9  2 0 4.56
3  8 2 0 1.13
4  7 2 0 3.67
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heoretical explanations are shown in details in section (SM-5) in
he supplementary material.

.4. Bioassay of captured hits

Tested hits, i.e., sotalol, glyburide, metipranolol, sulfamethi-
ole, glipizide, pioglitazone, esmolol, and sulfamethoxazole, were
urchased as analytical standards from Sigma–Aldrich, USA. The
TOR inhibitory activities of captured hits were assessed using

′-LYTETM biochemical assay from Invitrogen using PF-04691502
s standard mTOR inhibitor. Briefly, recombinant mTOR was  pur-
hased from Invitrogen (Carlsbad, CA). The mTOR kinase assays
ere carried out with the Invitrogen Z′-LYTETM Kinase Assay kit.

he assay was optimized for use with mTOR as described in
nvitrogen protocol. The mTOR concentration was  optimized to
btain the desired percent phosphorylation with an acceptable
′-factor value, which indicates the quality of an assay; Z′-factor
alues of 0.5 or greater classify an assay as excellent. A Z′-factor
alue of 0.74 was obtained at final kinase and ATP concentra-
ions of 14 nM and 100 �M,  respectively. Tested concentrations
anged from 10 nM to 10 �M distributed log-linearly across the
oncentration range, and at least two data points from each con-
entration were collected. The IC50 value for each experiment
as obtained using nonlinear regression of the log(concentration)

ersus percent inhibition values (GraphPad Prism 5.0). The
ssay conditions were validated by running positive (PF-
4691502) and negative (provided in Z′-LYTETM Kinase Assay kit)
ontrols.

. Results and discussion

.1. Pharmacophore modeling

We  employed the HipHop module of CATALYST software to
uild reasonable binding hypotheses. In this project, we employed
ix highly active standard mTOR inhibitors as training set for phar-
acophore modeling (Fig. 1, Table 1) [34–37].  A conformational

atabase for each of the training compounds was  generated using
he ‘CAESAR’ option.

HipHop identifies 3D spatial arrangements of chemical features
hat are common to active molecules in a training set. Principal
nd MaxOmitFeat parameters define how many molecules must
ap  completely or partially to the hypothesis. After several tri-

ls; it was decided to configure HipHop as follows. Inhibitors 1–5
Fig. 1), which have potent inhibitory actions against mTOR were
ssigned a principal value of 2 (Table 1) to ensure that all of the
hemical features in the compound will be considered in building
he pharmacophore space (Catalyst User Guide, Accelrys Software
nc.). On the other hand, compound 6 (Fig. 1), which is 8–16 times
ess active than inhibitors 1–5, was assigned a principal value of
 (Table 1) to ensure that it will be mapped at least once by each
enerated hypothesis. However, compound 6 was  allowed to miss
ne feature in any generated model by assigning it a MaxOmitFeat
arameter of one (Table 1), while the remaining compounds were
Fig. 2. Receiver operating characteristic (ROC) curve of Hypo1.

assigned a MaxOmitFeat of 0 to instruct HipHop that they should
not miss any feature during pharmacophore modeling (Table 1).

HipHop was asked to explore up to 6-featured pharmacophoric
space of the following possible features: hydrogen bond donors
and acceptors (HBDs and HBAs), hydrophobic (Hbic) and aromatic
(RingArom). Moreover, the number of features of any particular
type was allowed to vary from 3 to 4 for HBA, 0 to 1 for HBD, 0
to 1 for RingArom, and 0 to 1 for Hbic. Finally, HipHop was con-

structed to permit a minimal inter-feature distance of 1 ´̊A to build
the hypothesis. It was found that higher-feature pharmacophores
were too restrictive and of limited coverage, i.e., limited number
of hits was captured upon use as 3D search query. On the other
hand, lower-featured pharmacophores are non-selective and tend
to capture large number of hits.

Ultimately, 10 optimal pharmacophoric hypotheses were cre-
ated. The generated hypotheses share the same number of features;
4 HBAs, 1 hydrophobic, and 1 aromatic feature, but with different
3D spatial arrangements (Table 2).

To validate the resulting models, we  subjected our pharma-
cophores to ROC analysis to assess their abilities to selectively
capture diverse mTOR inhibitors from a large list of decoys. The
decoy list was prepared as described by Verdonk and co-workers
[38,39] and described in the supplementary material (see section
SM-6). Active testing compounds were defined as those possess-
ing mTOR affinities (IC50 values) ranging from 0.1 nM to 61 nM.
The testing set included 32 active compounds (retrieved from lit-
erature [40–43] and their structures are depicted in Fig. A in the
supplementary material) and 1322 ZINC compounds. The ROC test-
ing set (1354 compounds) was  screened by each pharmacophore
for ROC analysis employing the “Best rigid search” option imple-
mented in CATALYST. The validity of a particular pharmacophore
is indicated by the area under the curve (AUC) of the correspond-
ing ROC curve, as well as accuracy, specificity, true positive rate
and false negative rate of the pharmacophore [38,39]. To rank the
pharmacophores based on ROC properties, we employed a con-
sensus voting approach in which each individual ROC property
casts a vote if the corresponding value of the considered phar-
macophore falls within the highest 50% range of that property
across all pharmacophores. The consensus vote is the total number

of votes received. Table 2 summarizes different pharmacophoric
success criteria including the number of votes given for each phar-
macophores. Clearly from Table 2, Hypo1 showed excellent overall
properties. Fig. 2 shows the ROC curve of Hypo1. Fig. 3 shows Hypo1
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Table 2
HipHop-generated hypotheses and their ROC analysis results.

Hypotheses Hypothesis ranka AUCb FNRc TPRd SPCe ACCf Consensus votingg

Hypo1 96.12 0.948 0.0021 0.0625 0.998 0.968 5
Hypo2 95.47 0.939 0.0031 0.0938 0.997 0.968 4
Hypo3 95.07 0.936 0.0010 0.0313 0.999 0.968 3
Hypo4 94.39 0.912 0.0031 0.0938 0.997 0.968 3
Hypo5 93.40 0.926 0.0010 0.0313 0.999 0.968 3
Hypo6 93.21 0.935 0.0010 0.0313 0.999 0.968 3
Hypo7 92.79 0.859 0.0031 0.0938 0.997 0.968 3
Hypo8 92.66 0.925 0.0011 0.0625 0.998 0.968 3
Hypo9 92.24 0.838 0.0073 0.0206 0.993 0.966 1
Hypo10 92.21 0.886 0.0021 0.0625 0.998 0.968 4

a This ranking is as provided in the log file of the HipHop automatic run. The ranking is a measure of how well the active training molecules map  onto the proposed
pharmacophores, as well as the rarity of the pharmacophore models

b AUC: area under the curve.
c FNR: overall false negative rate.
d TPR: overall true positive rate.
e SPC: overall specificity.
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common anchoring points within PI3K�, namely: the peptidic N-
Hs of VAL882 and ASP964, albeit the sulfonamide of GDC0941
exhibits an extra interaction with the terminal ammonium of

Table 3
Settings employed in the sequential alignment trials preformed for mTOR kinase
domain against the kinase domain of PIK3� (PDB code: 1E7U).

Trial Scoring matrix Gap penaltya Homology model

Opening Extending Separation

1 Blosum 10 0.05 0.05 A
2  Blosum 100 0.2 0.2 B
3  Gonnet 10 0.05 0.05 –b

4 Gonnet 100 0.2 0.2 C
5  Identity 10 0.05 0.05 –b

6 Identity 100 0.2 0.2 –b

7 Pam 10 0.05 0.05 –b

8 Pam 100 0.2 0.2 –b
f ACC: overall accuracy.
g A consensus voting approach in which each individual ROC property casts a vote

f  values obtained for the particular ROC property across different binding models.

nd how it maps 5, as well as other training compounds. The ROC
urves of all models are provided in the supplementary material.

.2. Homology modeling of mTOR kinase domain and docking
xperiment

To gain better insights into the ligand–receptor binding inter-
ctions denoted by binding features of optimal pharmacophore
Hypo1), it was decided to build an appropriate homology model for

TOR kinase domain followed by docking the most potent training
ompound (5, Fig. 1, Table 1) into the homologous binding pocket.
omparison between the optimal pharmacophore and correspond-

ng docking-based ligand–mTOR interactions should allow better
ssessment of the significance individual binding features proposed
y Hypo1.

Homology modeling was performed employing SWISS-MODEL
erver [21] and based on several ClustalW [24] pair-wise align-
ents. The kinase domain of mTOR was aligned against the

rystallographic structure of closely related PI3K� (PDB ID = 1E7U)
ound to wortmannin [26]. This particular protein structure was
elected as template for modeling mTOR because it has the best
rystallographic resolution among PI3K� complexes in the protein
ata bank (2.0 Å), and the fact that it is complexed with a potent
nown mTOR inhibitor (i.e., wortmannin). Three homology mod-
ls were generated, i.e., A, B, and C (see Table 2). The models were
valuated by their WHATIF Quality Control values [44]. WHATIF
enerates a summary report of the overall quality of the protein
tructure as compared with current reliable protein structures pre-
ented in the form of RMS  Z-scores [44]. Table 4 shows the summary
utput of WHATIF criteria for the generated homology structures
A, B, and C).

To rank the resulting homology structures, we employed a con-
ensus voting approach in which each individual WHATIF property
asts a vote if the corresponding value of the considered struc-
ure falls within the highest 50% range obtained for that property
cross the different homology models. The consensus vote is the
otal number of votes received. Table 4 shows the number of votes
iven for each homology structure.

Models A received the highest number of votes (9), while
emaining models, i.e., B and C, scored significantly lower (6
otes each) suggesting their general poorer qualities. Therefore,

t was decided to select homology model A for subsequent dock-
ng/scoring modeling.

Fig. 4 shows details of sequence similarities and identities
mong homology model A and the corresponding PI3K� template.
 value of the considered binding model falls in the highest-ranking 50% of the range
nsensus vote is the total number of votes received.

Clearly from the figure, model A shows 20.1% and 23.6% sequence
identity and similarity, respectively, with template structure. Inter-
estingly, 7 out of 9 binding site amino acids in homology model
A are identical with their counterparts in PI3K� template, which
enhances confidence in the accuracy of the homologous binding
site (Fig. 4). Previous reports have strongly suggested that PI3K�
and mTOR have almost identical binding sites [28,45]. Fig. 5A shows
3D presentations of homology model A superimposed over PI3K�
template.

With the availability of plausible binding site structure for mTOR
we proceeded to docking experiment. Molecular docking was per-
formed employing LigandFit docking engine. The resulting docking
solutions were scored by six different scoring functions: Jain [29],
LigScore1, LigScore2 [27,30], PLP1 [31], PLP2 [32], and PMF  [33]. The
best docked pose of compound 5 (WYE-354) was selected based on
consensus among all 6 scoring functions. Fig. 3D and E shows the
docked pose of 5 into the putative binding pocket of mTOR.

Interestingly, the docked pose of 5 within mTOR homology
structure seems to starkly contrast with poses of related co-
crystallized ligands within PI3K�. Fig. 5 compares the docked pose
of 5 with co-crystallized complexes of wortmannin (PDB code
1E7U) and GDC0941 (PDB code 3DBS) within PI3K� binding pocket.
Both compounds are dual mTOR and PI3K� inhibitors.

Clearly from Fig. 5A–C, wortmannin and GDC0941 share two
a Manually configured ClustalW penalties imposed on gap placements in the
alignment procedure.

b The resulting ClustalW-based alignments failed in producing corresponding
homology models upon submission to SWISS-MODEL.
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Fig. 3. (A) Hypo1, HBAs are depicted as green vectored spheres, Hbic feature as light blue sphere, and AromRing as vectored orange sphere, (B) Hypo1 fitted against most
p ning c
m ively. 
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otent  training compound WYE-354 (5, IC50 = 5 nM), (C) Hypo1 fitted against all trai
odel  A of mTOR kinase domain, with and without added Connolly’s surface, respect

o  color in this figure legend, the reader is referred to the web version of the article

YS802 [45,46].  On the other hand, the optimal docked pose of
 has flipped orientation (Fig. 5D), whereby its morpholino frag-
ent is anchored to the guanidinium of ARG2251 at the out rim

f mTOR binding pocket, i.e., instead of binding with the peptidic
H of VAL882 (as seen with the analogous morpholine group of
DC0941).

This discrepancy is not unexpected, since the two  binding sites
f mTOR and PI3K� differ in two key binding amino acids, namely:
er2342 and Arg2251 in mTOR are substituted by Asp950 and
ln893 in PI3K�, respectively (Fig. 5A). This difference is expected

o cause drastic distinction between the binding modes of ligands

ithin PI3K� versus mTOR. Apparently, the morpholino fragment

f docked 5 favors strong hydrogen-bonding interactions with the
rofoundly polarized guanidinium of Arg2251 in mTOR, i.e., pre-
erred over bonding to mildly polarized peptidic N-H of Val882
ompounds, (D) and (E) Highest-ranking docked pose of 5 (WYE-354) into homology
Hydrogen bonds are shown as blue dotted lines. (For interpretation of the references

in PI3K�. Moreover, the partially negatively charged heterocyclic
nitrogen atoms of pyrazolo-pyrimidine core of 5 seems to favor
hydrogen-bonding with Ser2342 in mTOR compared to being
repelled by the carboxylate of homologous Asp950 in PI3K�.

Furthermore, casting the morpholino moiety above the ste-
rically unhindered Ala2248 at the outer rim of mTOR’s binding
pocket (Fig. 5A–D) should explain the tolerability of mTOR’s
binding site to accommodate extra steric substitutions on the
morpholine fragments, i.e., compared to PI3K�, which exhibits
a bulkier Lys890 residue at the same position (Fig. 5A–D). On
the other hand, projecting the morpholine ring into the tight

binding pouch within the vicinity of Val882 in PI3K� probably
explains the observed enhancements in mTOR selectivity over
PI3K� in association with increasing steric bulk of morpholine
moieties [45,46].
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ig. 4. The alignment of mTOR kinase domain and PI3K� template (PDB code: 1E7U)
re  high-lighted in yellow and green, respectively. Binding site amino acids are indic
he  reader is referred to the web  version of the article.)

In conclusion, although our docking places 5 in a pose that
isagrees with reported docking poses of mTOR inhibitors vis-à-
is the involvement of Val2240 (equivalent to Val882 in PI3K�)

45,46], we strongly believe that differences in amino acid compo-
ition within the binding pockets of the two homologous proteins
hould lead to significant differences in the corresponding docked
oses.

ig. 5. (A) Detailed view of key amino acids within the binding pocket of mTOR homology
uild  the homology model, PDB code: 1E7U, red). (B) Binding pocket of mTOR homology m
ith  wortmannin (PDB code: 1E7U). (C) Binding pocket of mTOR homology model (gr
otent  PI3K� inhibitor (GDC0941, PDB code: 3DPS). (D) Binding pocket of mTOR homolo
orresponding amino acids in PI3K� template (1E7U, red). Amino acids labels are colored
ielded the homology model A. Gaps are shown as (–), identical and similar residues
ith arrow heads. (For interpretation of the references to color in this figure legend,

Further support to the docking experiment comes from
close resemblance between interactions unveiled by docking and
pharmacophoric features of Hypo1. Clearly from Fig. 3, the pharma-

cophoric features of Hypo1 closely resemble binding interactions
suggested by the docking study: Mapping the central pyrazolo-
pyrimidine system of 5 against two  HBA features in Hypo1 (Fig. 3B)
corresponds to hydrogen bonding interactions connecting these

 model (green) aligned over corresponding amino acids in PI3K� template (used to
odel (green) aligned over corresponding amino acids in PI3K� (red) co-crystallized

een) aligned over corresponding amino acids in PI3K� (red) co-crystallized with
gy model (green) including the optimal docked pose of 5 (WYE-354) aligned over

 in red and green corresponding to respective proteins colors.
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heterocyclic nitrogens with the �-ammonium group of Lys2166 in
the docked model (Fig. 3D and E). Incidentally, previous homology
modeling and docking studies seem to ignore the role of Lys2166
in ligand binding/inhibition of mTOR [45,46] which contradicts
with the substantial evidence suggesting the significance of central
pyrimidine rings (or related analogous heterocycles) for the bioac-
tivities of most mTOR inhibitors, as evident in our pharmacophore
training set (compounds 1–6 in Fig. 1). In fact, the importance of
this core heterocyclic system is clearly evident in Hypo1.

Additionally, mapping the morpholino oxygen and piperidinyl
carbamate carbonyl of 5 by two HBA features in Hypo1 agrees nicely
with hydrogen bonding interactions tying these groups with the
guanidino and terminal ammonium group of Arg2251 and Lys2187,
respectively, as in Fig. 3B and D. Finally, mapping the pyrazolo ring
of 5 against RingArom feature in Hypo1 seems to correlate with
charge-transfer complexation of the electron-deficient pyrazolo
ring against the hydroxyl residue of Ser2165.

Interestingly, the hydrophobic feature of Hypo1, which partially
maps the benzene ring of 5, is not represented by any analogous
interaction in the docked pose of 5. In fact, this benzene and its
attached methyl carbamate fragment protrude outside the binding
pocket as can be seen in Fig. 3E.

In conclusion, homology modeling and docking experiments
strongly supported our common feature pharmacophore modeling
and subsequent pharmacophore selection based on ROC analyses.
Our enhanced confidence in pharmacophore modeling provided
impetus to proceed to the subsequent steps of virtual screening
and in vitro assay.

3.3. In silico screening

Based on our docking study of compound 5, which suggested
the redundancy of the Hbic feature in Hypo1, i.e., being not rep-
resented by any corresponding interaction in docking model (see
Fig. 3B and E), we  decided to delete this feature from Hypo1 to
better represent docking-based binding interactions in subsequent
virtual screening. Fig. 7A shows the pharmacophoric features of the
modified model.

We  employed the modified version of Hypo1 (ModHypo1) as
3D-search query against our in-house-built database of established
drug molecules (1533 compounds). However, we were obliged to
allow a maximum of one missed pharmacophoric feature for each
captured hit to account for the extremely potent bioactivities of
training compounds. Extremely potent training compounds are
expected to yield highly limiting binding models, probably unable
of capturing moderately potent hits, e.g., known drug molecules.

Virtual screening yielded eight hits captured by ModHypo1.
Table 5 shows the captured hits, their fit values and measured
anti-mTOR bioactivities, while Fig. 6 shows their corresponding
chemical structures.

The mTOR inhibitory activities of captured hits were assessed
using Z′-LYTETM biochemical assay from Invitrogen using PF-
04691502 as standard mTOR inhibitor [47] (Fig. 6). Compounds
showing % inhibition ≥50% were further analyzed to measure their
IC50 using GraphPad Prism. The dose–response curves of active
hits are depicted in Fig. C in the supplementary materials. Clearly
from the figure and Table 5, dose–response curves of captured hits
exhibit Hill slope values < 1.0 and excellent correlation coefficients,
which strongly suggest the authenticity (i.e., non-promiscuousity)
of the inhibitors [60–62].

Interestingly, the �-adrenergic blocker sotalol showed potent
anti-mTOR bioactivity with IC50 value of 256 nM. Fig. 7B and

D compares the docked pose of sotalol with the way  it fits
ModHypo1. Clearly from the figures, mapping the sulfonamide
oxygen atoms of sotalol against the central HBA features in Mod-
Hypo1 correlates with hydrogen-bonding interactions tying the



46 M.A. Khanfar et al. / Journal of Molecular Graphics and Modelling 42 (2013) 39–49

N

N N O

N O

H2N

O
OH

O

Cl

O

N
H

S
N
H

O

N
H

O

O

Glyburide

O

O

ON
H

Metipranolol

S

O

O H
N

S

N
N

H2N

Sulfamethizole

N

N

ON
H

S

O

O

H
N

H
N

O

Glipizide

S
NH

O

O

ON

Pioglitazone

lol

S

O

O
N
H

O N

NH2

S
O

O
NH

HN

HO

Sotalol

O

O O NH

OH

OH

02 is t

s
a
a
(
a
r
i
r
t
M
b
o

T
T

N

w
W
p

(
c

EsmoSulfamethoxazole

Fig. 6. The structures of captured hits by ModHypo1. PF-046915

ulfonamide with �-ammonium and guanidine groups of Lys2166
nd Arg2251, respectively, in a fashion reminiscent of binding inter-
ctions anchoring the central pyrazolo-pyrimidine of training 5
Fig. 3D). Similarly, mapping the central aromatic ring of sotalol
gainst RingArom feature in ModHypo1 agrees with stacking this
ing against the hydroxyl residues of Ser2165 and Ser2342, in a sim-
lar sense to the charge transfer complex connecting the pyrazole
ing of 5 with the hydroxyl residue of Ser2165. However, fitting
he terminal secondary amine of sotalol against HBA feature in
odHypo1 agrees with an electrostatically reinforced hydrogen-
onding interaction connecting this fragment with the carboxylate
f Asp2357. A similar interaction is seen with compound 5 albeit

able 5
he fit values and the inhibitory activities of hits captured by ModHypo1.

Hitsa Best fit values against
ModHypo1b

% of in
10  �M

Sotalol 3.77 89 

Glyburide 4.13 82 

Metipranolol 3.47 70 

Sulfamethizole 3.66 69 

Glipizide 4.21 54 

Pioglitazone 3.87 56 

Esmolol 2.88 41 

Sulfamethoxazole 1.95 28 

PF-04691502c – 100 

.D.: not determined.
a The compounds and their structures are as in Fig. 6.
b After allowing a single missed feature. Fit values against the pharmacophore, calculate

here
∑

mapped hypothesis features is the number of pharmacophore features that succ
 is the weight of the corresponding hypothesis feature spheres. This value is fixed to 1.0 

harmacophoric sphere and the center of the corresponding superimposed chemical mo

known as tolerance, equals 1.6 ´̊A by default).
∑

(disp/tol)2 is the summation of (disp/tol)2

hemical functionalities in the fitted compound.
c PF-04691502 is the standard positive control applied in mTOR inhibitory assay. The r
d This value represent the standard deviation of at least two data points from each con
e This value represents the correlation coefficient of the corresponding dose–response 

f Hill slope determined by GraphPad Prism 5.0 [61].
PF-04691502

he standard positive control used in the mTOR inhibitory assay.

with the terminal amino of Lys2187. Nevertheless, the electro-
statically reinforced hydrogen-bond with Asp2357 should provide
sotalol with equivalent enthalpic binding contributions compara-
ble to hydrogen-bonding interactions tying 5 to Lys2187.

Strangely, we could not find any previous reports linking sotalol
with any clinical or pharmacological observation related to its abil-
ity to inhibit mTOR bioactivity, which warrants future efforts to
investigate the clinical potential of its potent anti-mTOR bioactivity
(e.g., its anticancer, anti-Alzheimer’s or hypoglycemic potentials).
On the other hand, the oral hypoglycemic sulfonylurea drug, gly-
buride, which was second best inhibitor in our captured hit list with
anti-mTOR IC50 of 600 nM,  exhibits anticancer, anti-Alzheimer, and

hibition at IC50 (�M) Hill slopef

0.26 ± 0.09d (0.99)e 0.57
0.6 ± 0.1d (0.91)e 0.49
1.3 ± 0.3d (0.97)e 0.41
1.5 ± 0.4d (0.88)e 0.56
5.1 ± 1.0d (0.95)e 0.33
5.4 ± 0.9d (0.96)e 0.49
N.D. N.D.
N.D. N.D.
0.077 ± 0.02d (0.98)e 0.55

d as in the following: Fit =
∑

mapped hypothesis features × W [1 −
∑

(disp/tol)2],

essfully superimpose corresponding chemical moieties within the fitted compound,
in HipHop-generated models. disp is the distance between the center of a particular
iety of the fitted compound; tol is the radius of the pharmacophoric feature sphere

values for all pharmacophoric features that successfully superimpose corresponding

eported IC50 of PF-04691502 is 4 nM [47].
centration.
line at least three concentrations (0.1, 1, 10 �M and sometimes at 0.01 �M).
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ig. 7. (A) pharmacophoric features of ModHypo1; ModHypo1 fitted against (B) so
nd  AromRing as vectored orange sphere. (D) Top ranking docked pose of sotalol int
ines.  (For interpretation of the references to color in this figure legend, the reader i

ypoglycemic pharmacological properties. Needless to say that
hese three distinct pharmacological fields are directly related to

TOR inhibition as described in the introduction.
Glyburide have been reported to inhibit progression of many

ancers such as bladder carcinoma [48], prostate cancer [49], liver
ancer [50], breast cancer [51], and gastric cancer [52]. Further-
ore, glyburide arrests breast cancer cells in the G0/G1 phase

f the cell cycle, resulting in an inhibition of cell proliferation, a
echanism that can also be attributed to mTOR inhibition [8,51].
oreover; we believe that the ability of glyburide to diminish A�

oxicity in AD [53] can be partly accredited to mTOR inhibition.
Similarly, the insulin-sensitizer pioglitazon (anti-mTOR

C50 = 5.4 �M,  Table 5), has established anticancer activities by
nhibition cancerous cell proliferation, induction of apoptosis,
nd arrests cell cycle at G0/G1 phase in various cancer diseases;
echanisms not always correlated with peroxisome proliferator

ctivated receptor � (PPAR�)  expression [54–58].  The mTOR
nhibitory profile of pioglitazon can be responsible for some of its
nsulin-sensitizer and anti-aging (longevity) [59] activities.
. Conclusions

We present a successful example of employing an in silico
creening, based on robustly designed pharmacophore models in
IC50 256.1 nM), (C) all captured hits. HBAs are depicted as green vectored spheres,
ology model A of mTOR kinase domain. Hydrogen bonds are shown as blue dotted

rred to the web  version of the article.)

conjunction with ROC analysis and homology modeling of mTOR
kinase domain to identify novel compounds with potent mTOR
inhibitory activities. With only the very modest effort and expense
involved in experimentally screening, we identified five interesting
new validated hits having nanomolar to low micromolar affinity.
Importantly, the hits identified in our study had wide structural
diversity, and little true structural similarity to any of the other
known mTOR inhibitors, highlighting an important merit of the vir-
tual screening approach. Because they are established drugs, these
hits are expected to be excellent leads for subsequent optimization.
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